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Developed by imitating the operation of human brain, artificial neural network applications are used in 
many fields such as engineering, industry, medicine, agriculture, finance, communication, meteorology, 
space and aeronautics. By the help of sophisticated computing technologies, the learning algorithms 
used in artificial neural networks allowed solving many problems that remained as undecided and 
defied any mathematical expression, particularly in the fields of engineering. In geodetic studies, three-
dimensional geodetic networks are used for all sorts of location-based engineering measurements on 
earth. Numerous measurements are performed to determine the position of the points in geodetic 
networks. Possible errors and inconsistencies in these measurements affect geodetic network 
precision. Therefore, the test for outliers is implemented to eliminate measurement errors and sort out 
outliers. In the present study, the test for outliers was performed on a computer program developed by 
using ADALINE learning algorithm and the results were compared with traditional methods (data 
snooping, Tau, t). This new method was observed to be superior to traditional methods with regards to 
calculations about outliers and decision-making on the results.  
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INTRODUCTION 
 
As in many other disciplines, improvements in computing 
software and hardware have also led to rapid develop-
ments in engineering, as a result of which new methods 
have been created, particularly in engineering calcula-
tions. Analysis of engineering systems consists of two 
stages in general: constructing a mathematical model 
that represents an existing physical system and solving 
the obtained mathematical equation through analytical or 
various approximate numerical methods. Construction of 
a mathematical model requires a sound mathematical 
background, while analysis requires a quick and exten-
sive computer, as well as information. As a result, arti-
ficial intelligence techniques modelling the operation of 
the human brain have been developed. Using artificial 
intelligence techniques, computers can decide on any 
phenomenon and intuitively solve insoluble problems that  
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cannot be expressed through any mathematical formula. 
Artificial Neural Networks (ANN) constitutes one of the 
artificial intelligence techniques developed for hard-to-
program or un-programmable phenomena. Created by 
simulation of the operation of the human brain, ANN is a 
logical programming technique that aims to access 
through software the basic operations of the brain. Many 
ANN models are based on the operating principles of the 
brain (Haykin, 1994). ANN is used in various fields of 
industry, manufacturing industry, military project applica-
tions, information management, medical applications, 
precision farming, space and aeronautics industry, sur-
face modelling, modelling of meteorological phenomena 
and various fields of engineering (Ucan et al., 2006; 
Sagiroglu et al., 2003; Oztemel, 2006; Kosek et al., 2001; 
Bodri, 2001; Bodri and Cermak, 2003). ANN is used in 
geodetic studies, particularly in determining the earth’s 
gravity field, in geoid height determination from GPS/ 
Levelling measurements, as well as in constructing 3D 
numerical area models. In the present study, outlier 
detection  was  performed  for  geodetic  networks   using 



 
 
 
 
ADAptive LInear NEuron (ADALINE) learning algorithm, a 
recent application of an ANN model in geodesy, and the 
results were compared with traditional methods.  
 
 
OUTLIER DETECTION 
 
High-quality geodetic networks are needed for the deter-
mination of Earth’s shape and size, which is a subject of 
the science of geodesy, as well as for all kinds of 
location-based engineering measurements on Earth. 
Geodetic networks consist of horizontal control networks, 
in which x and y coordinates of certain points are deter-
mined, of vertical control networks, in which their heights 
(z) are determined, as well as of three-dimensional 
networks. 

During such measurements of geodetic nets, some 
gross, systematic or non-systematic errors might occur 
depending on who performs the measurement, the 
device used for the measurement and environmental 
conditions. Gross and systematic errors can be elimina-
ted by repeating the measurements and using a more 
appropriate measuring method, while non-systematic 
errors cannot be sorted out since their origins and time of 
occurrence are not known exactly (Konak and Dilaver, 
1998). 

The error theory assumes that non-systematic errors 
may occur in all measurements at any time. Therefore, 
even after the gross and systematic errors are sorted out, 
some inconsistencies can still be observed in geodetic 
net measurements owing to non-systematic errors. Such 
inconsistencies between measurements are discovered 
when the measurements are assessed collectively. Sta-
tistical methods are used to determine which 
measurement (s) should be considered as outliers 
according to these inconsistencies (Konak et al, 1999). 

Outliers can sometimes markedly disrupt statistical 
analyses, and sometimes their effects may not be 
noticed. Some outliers may be the most significant 
measure in the measurement network. Thus statisticians 
have developed numerous algorithms for outlier 
behaviour and detection (Hampel, 2001). 

Various test methods have been developed to 
investigate outliers in geodetic networks. Among these 
methods, the Data Snooping test, Tau test and t test, 
which are described as the conventional methods, have 
long been employed in determining outliers in geodetic 
networks (Koch, 1999; Hekimoglu and Erenoglu, 2007).  

The difference among the conventional methods results 
from the fact that different variance factors are used to 
standardize the adjustments for measurements (Vi). In 
the Data Snooping test process, the a priori variance 
value )( 0σσσσ , which represents the set of measures, is 
used for the hypotheses. The test size is: 
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Where; 

iivv
Q values represent the diagonal terms of 

cofactor matrix 
vv

Q . The critical value isp: 
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Here, 0αααα  is the significance level, N represents the 

normal distribution, F represents the Fischer table and 2χχχχ  
represents the Chi-Square table. The significance level 
for a single observation 0αααα  is computed from 
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Where; α is the total significance level and usually 
chosen as 5% and n is the number of observations 
(Baarda, 1968; Biacs et al., 1990). 
 
In the Tau test developed by Pope (1976), if the a priori 
variance cannot be known or does not yield a reliable 
value based on experience prior to the adjustment, the a 
posteriori variance m0, which is obtained after the 
adjustment calculation and outliers are also used for the 
calculation, is used in the test for outliers (Schwarz and 
Kok, 1993; Gokalp and Boz, 2005).  

Test size is:  
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The critical value of τ table can be obtained as follows 
(Heck, 1981): 
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Where; τ represents Tau table, t represents t (student) 
table. 
 
If a value li contains a gross error that makes it an outlier, 
the a posteriori variance m0 calculated by use of this 
measurement value will contain the same error. 
Therefore, the size of the Tau test calculated from 
Equation (4) also contains a certain degree of error. In 
this case, it would be more accurate to calculate the 
value m0 from calculations that are cleaned of the model 
errors (Gokalp and Boz, 2005; Sisman, 2005). 
Test size is:  
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Figure 1. An ADALINE unit. 
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The critical value of t table is: 
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ADALINE LEARNING ALGORITHM  
 
The literature on ANN includes many learning algorithms, 
most of which are mathematics-based and are used for 
weight updating. Most have been derived from the Hebb 
(1949) rule. The Delta rule is a different version of the 
Hebb rule. The Widrow-Hoff delta rule for ADALINE is 
one of the most popular learning rules for mapping neural 
networks. Like the McCulloch-Pitts neuron and 
Rosenblatt’s perception, ADALINE is one of the earliest 
neural-network models. Widrow and Hoff proposed the 
ADALINE model and developed one of the most 
important learning algorithms, now often referred to as 
the Widrow-Hoff delta rule or simply delta rule (McCulloch 
and Pitts, 1943; Rosenblatt, 1958; Widrow and Hoff, 
1960). This rule is based upon an idea that reduces the 
difference between the actual output and desired output 
of the neuron, reinforces and continuously changes its 
input connections. It is grounded on the principle of 
reducing mean square error by changing the connection 
weight values. The error reduces through a simultaneous 
back-propagation from one layer to the preceding layers. 
The process of reducing the errors of the network 
continues from the output layer to the input layer 
(Sagiroglu et al., 2003). ADALINE is only a linear model, 
and hence its capability is very limited. Its learning 
algorithm, the delta rule, is not only extremely simple but 
also linear, which makes learning fast and easy. The 
ADALINE has become a powerful tool in some areas, 
such as adaptive signal processing, even with its limited 
modelling capability (Widrow and Stearns, 1985; Wang et 
al., 2000; Kavak et al., 2005). 

In general terms, ADALINE is a network consisting of a 
process element (ADALINE unit). This network is based 
on the square of  the  least  mean  squares  method.  The  

 
 
 
 

 
 
Figure 2. Levelling net. 

 
 
 
basis of the learning rule is the principle of regulating the 
weights to minimise the network output error when 
compared with the desired output value. Figure 1 shows 
the constitution of an ADALINE unit. 

In Figure 1, Xi indicates n number of inputs, W i the 
weights that represent the effect of each input on the 
ADALINE unit, and ΦΦΦΦ  the threshold value that gives the 
output of ADALINE unit a non-zero value. Calculation is 
based on the following equation:  

 

����
====

ΦΦΦΦ++++====
n

i
ii XWI

1
  

 
Output O will be 
 

01)(
01)(

<−=
>==
IIFOOUTPUT

IIFOOUTPUT
                              (10) 

 
OBE −−−−====   

 
Since the aim is to find the values to minimize value E, 
errors are calculated by presenting the network with 
different samples each time, and weights are adjusted to 
reduce the error. The result is calculated by obtaining the 
final weights when value E reaches its minimum. 
 
 
APPLICATION AND PROGRAMMING 
 
In order to investigate outlier detection in geodetic nets 
using ADALINE learning algorithm, the levelling net in 
Figure 2 and the triangulation net in Figure 3 were 
established and measures were performed in Ahmet 
Necdet Sezer Campus area at Afyon Kocatepe University 
(Turkey). 

The levelling net consists of 10 points, among which 26 
height differences were measured. The weights of all 
these measures are equal and were taken as 1. 
Approximate heights of all the points in the levelling net 
were taken as unknown and the height differences 
between the points were adjusted  through  free  levelling 
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Figure 3. Triangulation net. 

 
 
 

Table 1. Adjustment data (1st adjustment). 
 
Adjustment parameters Levelling Triangulation 
Number of points, u 10 7 
Number of measures, n 26 36 
Datum defect, d 1 4 
Degree of freedom, f 17 19 
A posteriori variance, m0 (±) 0.038667 m 3.532536cc 

 
 
 

Table 2. Statistical table values and outlier data.  
 

Levelling Triangulation 
qDS qTau qt qDS qTau qt 

3.1000 2.7970 4.0300 3.1970 2.8923 4.0850 
 

Outlier height differences Outlier direction angles 
L6, L20 L6, L20 L6 L15 L15 L15 

 
 
 
network adjustment. The triangulation net consists of 7 
points, on which 36 direction angles were measured. 
Direction weights are equal and were taken as 1. By 
taking approximate coordinates of all points in the 
traingulation net as unknown, free triangulation net 
adjustment was made and the direction angles between 
the points were adjusted. Table 1 presents the data on 
the adjustment results for the levelling net and 
triangulation net.  

To detect the outliers in the levelling and triangulation 
nets by conventional methods, the correction values (Vi) 
for the measures as a result of the 1st adjustment were 
used. For this purpose, by  using  Equations  1,  4  and  6  

were for each measure, the test size values TDS, TTau and 
Tt were compared with the statistical table values qDS, 
qTau and qt, which are computed by equations 2, 5 and 8, 
respectively. As a result of the comparison, measure(s) of 
the test size value greater than the statistical table value 
were taken as outliers. Table 2 shows the data on the 
statistical table values and outliers used in the outlier test 
performed for the levelling and triangulation nets by 
conventional methods. 

Height difference measures L6 and L20 in the levelling 
net and direction angle L15 in the triangulation net were 
excluded from the measure set as they were identified to 
be outliers by conventional outlier detection methods, and  
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Table 3. Adjustment data (2nd adjustment). 
 

Adjustment parameters Levelling Triangulation 
Number of points, u 10 7 
Number of measures, n 24 35 
Datum defect, d 1 4 
Degree of freedom, f 15 18 
A posteriori variance, m0 (±) 0.019792 m 1.989293cc 

 
 
 

Table 4. Statistical table values and outlier data (according to the results of the 2nd adjustment). 
 

Levelling Triangulation 
qDS qTau qt qDS qTau qt 

2.7430 3.0800 4.1200 3.1880 2.8709 4.1200 
      

Outlier height differences Outlier direction angles 
- - - - L24 L24 

 
 
 
a second adjustment was performed and the outlier test 
was repeated with the remaining measures. The results 
of the second adjustment are given in Table 3, and Table 
4 presents the statistical table values and outlier data 
computed by using the correction values obtained with 
the results of the second adjustment. Since conventional 
outlier detection methods carried out by using the values 
obtained as a result of the 2nd adjustment for the 
levelling net did not reveal any outliers; that is, all 
measures were found to be consistent, the adjustment 
process was ended and the points’ exact heights were 
calculated by using the adjusted height differences 
obtained in the final adjustment process. However, 
according to the conventional outlier detection methods 
performed on the values obtained in the 2nd adjustment 
for the triangulation net, direction angle L24 was identified 
to be an outlier. Direction angle L24 was excluded from 
the measure set in the triangulation net and a 3rd 
adjustment and outlier test was performed with the 
remaining measures. Table 5 shows the data on the 3rd 
adjustment for the triangulation net and Table 6 presents 
the statistical table values and outlier data calculated 
using the correction values obtained according to the 
results of this adjustment process.  

Since conventional outlier detection methods carried 
out by using the values obtained as a result of the 3rd 
adjustment for the triangulation net did not reveal any 
outliers; that is, all measures were found to be consistent, 
the adjustment process was ended and the points’ exact 
coordinates were found by using the adjusted direction 
angles obtained in the final adjustment process. As 
clearly seen in Tables 1 - 6, in detecting the outliers in 
geodetic nets by conventional methods, differences might 
be observed among methods with regard to the results 
obtained. Furthermore, in outlier detection using  conven-  

Table 5. Adjustment data (3rd adjustment). 
 
Adjustment parameters Triangulation 
Number of points, u 7 
Number of measures, n 34 
Datum defect, d 4 
Degree of freedom, f 17 
A posteriori variance, m0 (±) 0.874294cc 

 
 
 

Table 6. Statistical table values and outlier data (according 
to the results of the 3rd adjustment). 
 

Triangulation 
qDS qTau qt 

3.1800 2.8424 4.1610 
   

Outlier direction angles 
- - - 

 
 
 
tional methods, the outlier detection test should be 
repeated until there are no outliers in the geodetic net. 
Therefore, multiple adjustments and outlier tests are 
often performed in a geodetic net. In order to overcome 
this drawback, or to detect all possible outliers in geodetic 
nets at the first stage and to eliminate the need for 
numerous mathematical operations, a software program 
was developed in V�SUAL BASIC language by using 
ADALINE learning algorithm for outlier detection by the 
artificial neural network method. 

In line with the rule of least mean squares, to train the 
geodetic network with ADALINE learning algorithm, it was  
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Table 7. Values obtained with ADALINE learning algorithm. 
  

Levelling Triangulation 
Vk= V15 Φ O Vk= V16 Φ O 

1.3178 mm 2.7970 4.0300 0.0478 -0.4491 2.1670 
      

Outlier height differences Outlier direction angles 
L6, L20 

L6, L20 

L6 

L15, L24 

L15 

L15 
 
 
 

Table 8. Values obtained with ADALINE learning algorithm (2nd Test). 
 

Levelling Triangulation 
Vk= V23 Φ O Vk= V35 Φ O 

0.0009 mm -0.9802 0.0228 -0.0079 -0.5170 1.0335 
      

Outlier height differences Outlier direction angles 
- 

L6, L20 

L6 

- 

L15 

L15 
 
 
 
assumed that the measure with the lowest correction 
value obtained through free geodetic network adjustment 
cannot be an outlier. Thus, in accordance with the 
principle of the ADALINE learning algorithm, the following 
equation was developed by using the )(

vv
Q  values of 

inverse matrix of weight coefficients for the corrections. 
  

ΦΦΦΦ++++==== ��������
==== ====
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1 1
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n

i

n

j
vvji  (12) 

 

By taking as consistent the value kI obtained from value 
with the lowest correction rate kV , the network was 
trained using Equation (12) with the help of matrix 

),( jkQvv and outliers were detected by applying the 
obtained weights to the entire geodetic network (Table 7).  

In order to check the accuracy of the outliers in Table 7 
detected by the artificial neural network method using 
ADALINE learning algorithm, measures L6 and L20 in the 
levelling net and measures L15 and L24 in the triangulation 
net were removed from the measure set and a second 
outlier detection process was performed both for the 
levelling net and the triangulation net by using ADALINE 
learning algorithm. Table 8 presents the results obtained 
from this checking process.  
 
 
CONCLUSION 
 
Adjustment calculations for geodetic nets that could often 
not be  performed  or  could  only  be  approximately  per- 

formed previously owing to computational difficulties can 
be carried out in accordance with the error theory today, 
thanks to the vast and quick calculation opportunities 
offered by computers. To this end, the measures used in 
the adjustment of geodetic nets should be examined and 
cleaned of outliers, if any. Researchers should work 
meticulously to identify outliers, investigate their reasons, 
and remove the outlier from the measure set or repeat 
the measurement if necessary. At this stage, it should be 
remembered that the root mean square will increase 
since each measure removed from the measure set will 
decrease the number of redundant measures; and, in 
contrast, the adjustment performed for the measure set 
containing the outlier will not follow the rule of minimum 
sum of squares of the corrections, a rule that forms the 
basis of network adjustment.  

Studies on conventional outlier detection methods refer 
to their disadvantages of being directly affected by the 
errors in correction, propagating these errors and 
containing iterative solutions, besides their advantage of 
statistical evaluation in outlier detection. These studies 
conclude that:  
 
1. The data snooping test could be preferred if a reliable 
a priori variance is obtained prior to the adjustment. 
2. Tau or t tests could be used if there is no information 
on the a priori sensitivity of the network and if either Tau 
or t test is preferred, t test will be more appropriate as it 
uses the a posteriori variance cleaned of model errors. 
3. It would be more appropriate to use more than one test 
method and interpret the common results in any decision 
about outliers.  
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In this study, the possibility of outlier detection by 
ADALINE learning algorithm, which is used to detect outliers 
in geodetic nets and involves fewer process stages than 
conventional methods, was tested both in levelling and 
triangulation nets. 

To this end, free network adjustment (1st adjustment) 
was first performed in the levelling and triangulation nets 
by using all the measures for the network (Table 1). The 
conventional outlier detection methods employed by 
using the correction value obtained from free network 
adjustment revealed that the only outliers in the levelling 
net were height differences L6 and L20 in the Data 
Snooping and Tau method and height difference L6 in the 
t-test method (Table 2). And in the triangulation net, 
direction angle L15 was identified as the outlier in all of the 
three methods (Table 2). These different results found in 
the levelling net revealed a critical drawback of the 
conventional outlier detection methods, which suggests 
that there may be advantages and disadvantages among 
the conventional outlier detection methods and thus, 
different results might be obtained. Another drawback of 
outlier detection by conventional methods is the repetition 
of the process until there is no outlier left in the geodetic 
net. For this purpose, the outliers in Table 2 were 
removed from the measure set and the second 
adjustment (Table 3) and a second outlier test were 
performed by using the correction values obtained from 
the second adjustment. These tests showed that all the 
measures in the levelling net were consistent, while 
measure L24 in the triangulation net was an outlier 
direction angle (Table 4). Since there was no outlier left in 
the levelling net, no other adjustment was made and the 
points’ exact heights were computed according the 
results of the 2nd adjustment. Nevertheless, in the 
triangulation net, direction angle L24 was removed from 
the measure set and a third adjustment (Table 5) was 
performed. A third outlier test was carried out by using 
the correction values obtained from the third adjustment 
and all the remaining measures in the triangulation net 
were identified to be consistent (Table 6). Thus, the exact 
coordinates of the points in the triangulation net were 
computed in accordance with the adjustment results in 
Table 5. 

Outlier detection in geodetic nets using conventional 
outlier detection methods has numerous drawbacks, such 
as the difficulties about which method to select and 
whether the result obtained from the selected method is 
accurate, the difficulty in identifying the critical values 
used to calculate statistical table values, and the need to 
repeat testing until there is no outlier left in the network. 
In order to eliminate these drawbacks, the possibility of 
outlier detection in geodetic nets by ADALINE learning 
algorithm using artificial neural network techniques was 
tested both in levelling and triangulation nets.  

Thus, by assuming that of the correction values (Vi) 
obtained as a result of the free network adjustment (1st 
adjustment), the measure of the smallest correction value 
as  an  absolute  value  (Vk)  cannot  be  an  outlier,  each  

 
 
 
 
correction value was taken as an input value for the 
artificial neural network and the geodetic net was trained 
with ADALINE learning algorithm. At the end of training, 
the expected value (B) was calculated for each output 
value (O) and the values were sought that would make 
Equation (11) have the minimum value. Bu using the 
weight and output values resulting in minimum values, 
height differences L6 and L20 in the levelling net and 
direction angles L15 and L24 in the triangulation net were 
identified to be outliers, as seen in Table 7. It was 
observed that these detected outliers are consistent with 
the results of the conventional methods and in the 
triangulation net in particular, measure L24 was found to 
be inconsistent without the need for a second adjustment 
and thus without performing a second outlier test.  

In order to check whether there was any other outlier 
both in the levelling net and the triangulation net, 
measures L6 and L20 in the levelling net and measures L15 
and L24 in the triangulation net were excluded from the 
measure set and the adjustment was repeated. The net 
was trained by ADALINE learning algorithm in accor-
dance with the results obtained from the new adjustment. 
As a result, no outlier was detected, as is clear from 
Table 8.  This demonstrates that all outliers in geodetic 
nets can be detected with the 1st adjustment by using 
ADALINE learning algorithm and there is no need for a 
2nd or 3rd adjustment or outlier test.  

The superiority of detecting outliers through the 
ADALINE learning algorithm over conventional methods 
lies in the fact that statistical tests are not used, which is 
accepted as an advantage of conventional outlier detec-
tion methods because there is a possibility of committing 
errors to an extent close to the size of the test used or at 
levels exceeding the threshold value. In particular, 
according to the table threshold value, there is a 
possibility that a measure that is actually an outlier could 
be identified as consistent since the measure identified 
as an outlier is very important for the measure plan and 
strongly affects the internal and external sensitivity of the 
network, or the table value to be used is high, a case that 
occurs in geodetic networks with insufficient number of 
redundant measures. The method developed here elimi-
nated this problem. Another advantage of this method is 
that it does not use the a priori and a posteriori variance 
values that the conven-tional outlier detection methods 
use. Thus, inconsistent measures in the measure set 
used to calculate a priori and a posteriori variances can 
be avoided.  
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