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In this study, the function  ( )log zη  was used instead of function Dedekind’s  ( )zη  . Then the value 

change of this function with the variables 
2r

z
 was  investigated. Hence the quasi elliptic function  

( )r
zφ  was established.  
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INTRODUCTĐON 
 
We will start our work the following definition. 
 

Definition:  A lattice Ω  of complex numbers is an 
aggregate of complex numbers with the two properties: 
 

(i)   Ω  is a group with repect to addition. 
(ii)  The absolute magnitudes of the non-zero elements 

are bounded below, that is, there is a real number  0k f  

such that  w k≥ for all 0w ≠ in Ω   ( Duval, 1973). 

 
Definition:   A double periodic meromorphic function in 
the open z-plane is called an elliptic function. According 

to this definition, if a meromorphic function :f C C→  

satisfies   
 

1 2( 2 ) ( ) , ( 2 ) ( )f z w f z f z w f z+ = + =                   (1) 

 

then ( )f z  is called an elliptic function with respect to the 

periods  1 22 , 2w w . Where  1 22 2w and w  are two 

complex numbers whose ratio is not a real number and  
z is a complex variable  (Ocak ,1985). We denote 2- 
dimensionel  lattice by 
 

1
1 2 1 2

2

2w
={m2w  + n2w  : m,n Z, 2w ,2w C and  Real }

2w
Ω ∈ ∈ ≠   

The Equations (1) are generally written as  
 

( ) ( )f z f z+ Ω =  

 
For some constant  2w, a function f(z) is called quasi-

periodic and  2w  is a quasi period if  ( 2 )f z w+  is some 

what trivially related to ( )f z  though not indentically 

equal to, when the quasi-periods form a double lattice, 
the function is called quasi-double lattice, the function is 
called quasi-double periodic or quasi-elliptic (Kaplan, 
2004). 
 
 
Construction of  Quasi-Elliptic Function 
 
Here, we give information about the work before and  the 
definition of function Dedekind’s η . 

 
 
Definition 
 
The function   
 

( ) ( )212
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is called function   Dedekind’s   η ,   where    z C∈    and 



 
 
 
 

Im( ) 0z f ( Chandrasekharan, 1985). The function 

( )( )logη σ τ  was used instead of function Dedekind’s – 

( )η τ for 

 

  ( ) ( )2, ,
a b a b

SL Z
c d c d

τ
σ σ τ

τ

  +
= ∈ = 
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(Dedekind ,1930). Hence the quasi elliptic function  

( )r
ψ τ  was established ( Kaplan et al., 2001). Further, 

on transformation of the function 3logθ  some results 

was obtained by Kurt ( Kurt ,1995). 

Here,  ( )log zη   function is written as follows: 
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Let  

( ) log ( ) , 1, 2,3,...
2

r r
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z rφ η= =   

 
Then we have 
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Otherwise,we have   
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By using the expansion  
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in (Chandrasekharan, 1985), for n N +∈  and  

Im( ) 0z f .  Then we expand the first of the double sum 

(2)  to obtain  
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In this equation , we take the partial sum of the infinite 

sum for n N∈  , n ∞p  to get 
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                  (3) 
 

If we repeat the same operations for 2r = , we hold of 
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Considering the Equations (3) and  (4),  we can write 

generelized function  ( )r
zφ , 

 

( )
1 1

1 1
log ( )
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n n

r r r r
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Since the function  ( )r
zφ  is meromorphic in upper half 

plane and it is quasiperiodic with periods 2 r

k
    and   2

rt  

for ,k n N∈ ,  t Z∈ . ( )r
zφ  is a quasi-elliptic function.  

One can establish an elliptic function by using ( )r
zφ . 
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