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Quantitative structure-activity relationship (QSAR) is a computational process that relates the chemical 
structure of compounds with their activities, especially biologic activities or effects. It employs series of 
computer-based processes to analyze quantitative experimental data of the activities of given 
compounds with known chemical structures in order to predict a relationship, model or equation that 
will help to propose the activity of known compounds with unknown activities or unknown compounds 
and their activities. Commonly used computer softwares in QSAR analysis include HYPERCHEM, 
MATLAB, DRAGON and RECKON. 
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INTRODUCTION 
 
Quantitative structure-activity relationship (QSAR) is the 
process by which chemical structure is quantitatively 
correlated with a well defined process, such as biological 
activity (Wikipedia, 27/11/09). It is the calculation of 
quantitative structure-activity relationship values, used to 
predict the activity of compounds from their structures. In 
this context, there is also a strong relationship to Chemo-
metrics. Chemical expert systems are also relevant, since 
they represent parts of chemical knowledge as an in 
silico representation. 

For example, biological activity can be expressed 
quantitatively as in the concentration of  a  substance  re- 
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quired to give a certain biological response. Addi-tionally, 
when physicochemical properties or structures are 
expressed by numbers, one can form a mathematical 
relationship, or quantitative structure-activity relationship, 
between the two. The mathematical expression can then 
be used to predict the biological response of other 
chemical structures. 
QSAR's most general mathematical form is: 
 
Activity = f (physiochemical properties and/ or structural 
properties) 
 
Methods which can be used in QSAR include various 
regression and pattern recognition techniques. 
 
 
SAR AND THE SAR PARADOX 
 
The basic assumption for all molecule based hypotheses 
is that similar molecules have similar activities. This 
principle is also called Structure-Activity Relationship 
(SAR). The underlying problem is therefore how to define 
a small difference on a molecular level,  since  each  kind 
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of activity, e.g. reaction ability, biotransformation ability, 
solubility, target activity and so on, might depend on 
another difference. A good example was given in the 
bioisosterism review of Patani and LaVoie (1996).  

In general, one is more interested in finding strong 
trends. Created hypotheses usually rely on a finite 
number of chemical data. Thus, the induction principle 
should be respected to avoid overfitted hypotheses and 
deriving overfitted and useless interpretations on 
structural/molecular data. The SAR paradox refers to the 
fact that it is not the case that all similar molecules have 
similar activities. 

It has been shown that the partition coefficient, log P, of 
a compound can be determined by the sum of its 
fragments. Fragmentary log P values have been 
determined statistically. This method gives mixed results 
and is generally not trusted to have accuracy of more 
than ± 0.1 units (Wildman and Crippen, 1999).  
 
 
3D-QSAR 
 
3D-QSAR refers to the application of force field calcula-
tions requiring three-dimensional structures, e.g. based 
on protein crystallography or molecule superposition. It 
uses computed potentials, e.g. the Lennard-Jones poten-
tial, rather than experimental constants and is concerned 
with the overall molecule rather than a single substituent. 
It examines the steric fields (shape of the molecule) and 
the electrostatic fields based on the applied energy 
function (Leach, 2001). The created data space is then 
usually reduced by a following feature extraction. The 
following learning method can be any of the machine 
learning methods, e.g. support vector machines (Vert et 
al., 2004).  

In the literature, it can be seen that chemists have a 
preference for partial least squares (PLS) methods, since 
they apply the feature extraction and induction in one 
step. 
 
 
Data mining 
 
For coding, usually a relatively large number of features 
or molecular descriptors are calculated, which can lack 
structural interpretation ability. In combination with the 
later applied learning method or as pre-processing step, 
occurs a feature selection problem. A typical data mining 
based prediction uses e.g. support vector machines, 
decision trees or neural networks for inducing a predictive 
learning model. Molecule mining approaches, a special 
case of structured data mining approaches, apply a 
similarity matrix based prediction or an automatic frag-
mentation scheme into molecular substructures. Further-
more, there also exist, approaches using maximum 
common subgraph searches or graph kernels (Gusfield, 
1997; Helma, 2005). 

 
 
 
 
Judging the quality of QSAR models 
 
QSARs represent predictive models derived from appli-
cation of statistical tools correlating biological activity 
(including desirable therapeutic effect and undesirable 
side effects) of chemicals (drugs/ toxicants/ environ-
mental pollutants) with descriptors representative of 
molecular structure and/ or properties. QSARs are being 
applied in many disciplines, for example risk assessment, 
toxicity prediction and regulatory decisions (Tong et al., 
2005) in addition to drug discovery and lead optimization 
(Dearden, 2003). Obtaining a good quality QSAR model 
depends on many factors, such as the quality of biolo-
gical data, the choice of descriptors and statistical 
methods. Any QSAR modeling should ultimately lead to 
statistically robust models capable of making accurate 
and reliable predictions of biological activities of new 
compounds. 

For validation of QSAR models, four strategies are 
usually adopted (Wold and Eriksson, 1995) namely: inter-
nal validation or cross-validation; validation by dividing 
the data set into training and test compounds; true 
external validation by application of model on external 
data and data randomization or Y-scrambling. 

The success of any QSAR model depends on accuracy 
of the input data, selection of appropriate descriptors and 
statistical tools and most importantly, validation of the 
developed model. Validation is the process by which the 
reliability and relevance of a procedure are established 
for a specific purpose (Roy, 2007). Leave one-out cross-
validation generally leads to an overestimation of 
predictive capacity and even with external validation; no 
one can be sure whether the selection of training and test 
sets was manipulated to maximize the predictive capacity 
of the model being published. Different aspects of 
validation of QSAR models that need attention include 
methods of selection of training set compounds (Leonard 
and Roy, 2006), setting training set size (Roy et al., 2008) 
and impact of variable selection (Roy and Roy, 2008) for 
training set models for determining the quality of 
prediction. Development of novel validation parameters 
for judging quality of QSAR models is also important (Roy 
et al., 2009). 
 
 
SOME APPLICATIONS OF QSAR 
 
Chemical applications 
 
One of the first historical QSAR applications was to 
predict boiling points (Rouvray and Bonchev, 1991). It is 
well known for instance that within a particular family of 
chemical compounds, especially in organic chemistry, 
that there are strong correlations  between structure and 
observed properties. A simple example is the relationship 
between the number of carbons in alkanes and their 
boiling points. There is a  clear  trend  in  the  increase  of  



 
 
 
 
boiling point with an increase in the number carbons and 
this serves as a means for predicting the boiling points of 
higher alkanes. 

A still very interesting application is the Hammett equa-
tion, Taft equation and pKa prediction methods 
(Fraczkiewicz, 2007).  
 
 
Biological applications 
 
The biological activity of molecules is usually measured 
in assays to establish the level of inhibition of particular 
signal transduction or metabolic pathways. Chemicals 
can also be biologically active by being toxic. Drug 
discovery often involves the use of QSAR to identify 
chemical structures that could have good inhibitory 
effects on specific targets and have low toxicity (non-
specific activity). Of special interest is the prediction of 
partition coefficient log P, which is an important measure 
used in identifying "drug-likeness" according to Lipinski's 
Rule of Five. 

While many quantitative structure activity relationship 
analyses involve the interactions of a family of molecules 
with an enzyme or receptor binding site, QSAR can also 
be used to study the interactions between the structural 
domains of proteins. Protein-protein interactions can be 
quantitatively analyzed for structural variations resulting 
from site-directed mutagenesis (Freyhult et al., 2003). It 
is part of the machine learning method to reduce the risk 
for a SAR paradox, especially taking into account that 
only a finite amount of data is available. In general, all 
QSAR problems can be divided into a coding 
(Timmerman et al., 2002) and learning (Strok et al., 
2001).  
 
 
Applicability domain 
 
As the use of (Q) SAR models for chemical risk 
management increases steadily and is also used for 
regulatory purposes (in the EU: Registration, Evaluation, 
Authorisation and Restriction of Chemicals), it is of crucial 
importance to be able to assess the reliability of 
predictions. The chemical descriptor space spanned by a 
particular training set of chemicals is called Applicability 
Domain. It offers the opportunity to assess whether a 
compound can be reliably predicted.  
 
 
PARTIAL ORDER RANKING IN QSAR 
 
The fundamentals of QSAR are well known and they 
have been rationalized and systematized around ten 
years ago (Castro, 2006). The importance of this subject 
is very well documented by the apparition of several 
specialized journals, monographs, reviews and books 
and the development of numerous research works Regis-  
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tered in journals of general interest. The development of 
QSAR models are however, often based upon rather 
demanding statistical methods so that it has become 
necessary to look for more operationally simple 
alternatives. The Partial Order Ranking (POR) theory is 
one of such options and from a strict mathematical 
viewpoint, it seems to be extremely simple compared with 
the usual statistical methods. It ranks results in a very 
transparent and suitable way to perform comparisons 
among a set of objects (such as molecules) according to 
their attributes (molecular descriptors) values.The POR 
method is based on elementary procedures of Discrete 
mathematics which only resort to the “�” as the basic 
mathematical operation. The relatively simple mathema-
tical resources needed to apply the method have 
attracted the attention of a qualified group of researchers 
who have already gotten many relevant results within the 
realm of QSAR Theory. 
 
 
PROCEDURES IN QSAR ANALYSIS 
 
In a typical QSAR modeling process, a set of 
experimental data containing the numerical values of the 
activity to be modeled, from an experimental data set is 
divided into two sets - training and test sets, in such a 
way that the training set would be more than the test. 
Next, the structures of all the compounds in the data set 
are then drawn and pre-optimized with the molecular 
mechanics force field (MM+) procedure included in the 
HYPERCHEM 6.03 software package (Hypercube). After 
that, the resulting geometries are refined by means of a 
suitable semi empirical method e.g. PM3 (Parametric 
method 3) using the Polak-Ribiere algorithm and a 
suitable gradient norm limit. Suitable descriptors (that 
describe different relevant features of the compounds, 
through mathematical formula obtained from the chemical 
graph theory, information theory, quantum mechanics, 
etc) (Katritzky et al., 1995), are then proffered and 
calculated for the experimental data using the DRAGON 
(Milano Chemometrics and QSAR Researh Group) or 
any other suitable software, resulting in a pool usually 
containing D = 1497 numerical variables.  
A suitable model or models is/are proposed for the 
experimental data, using MATLAB, REKON or any other 
ideal software, showing the most appropriate descrip-
tor(s) for the experimental data or property under 
consideration. A suitable method, for instance, the 
Replacement Method (Carta et al., 2002, 2004, 2005) is 
then employed as variable subset selection approach. 
Replacement Method (RM) is an algorithm that generates 
multi-variable linear regression models by minimizing its 
standard deviation, S and whose results are quite close 
to the ones obtained with exact (combinatorial) search of 
molecular descriptors although requiring much less 
computational work.  

The structures of the known and  unknown  compounds 
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whose activity is to be determined are now drawn using 
CHEMDRAW, optimized and fitted into the already 
established model(s) using the appropriate softwares. 
From this, the unknown activities can be predicted. 
Shown below is a typical QSAR model for the inhibitory 
concentration (IC50) of a given antibiotic: 
 
Log 10 (IC50) = 50.120 (±0.1) + 15.32 (± 0.2). Mor02e - 
5.812 (± 1.0). MATS2m 
N = 100, R = 0.9324, S = 0.1987, FIT = 20.003, p < 10-5, 
Rloo = 0.9130, Sloo = 0.1999, range in Mpt: 4.00 - 6.50°C, 
Outliers (> 25):1. 
 
Where Mor02e and MATS2m are molecular descriptors, 
N is the number of molecules in the training set, R is
 the correlation coefficient, S is the model’s 
standard deviation, FIT is the Kubinyi function, p is the 
significance of the model, outliers, (> 25) denotes the 
number of molecules having a residual (res) that exceeds 
two standard deviations, and loo stands for the leave-
one-outcross validation techniques. 
 
 
RECENT APPLICATIONS OF QSAR IN DRUG 
DISCOVERY 
 
Duchowicz et al. (2007) have provided QSAR models for 
the growth inhibition of ciliated protozoa, Tetrahymena 
pyriformis by 250 mechanistically diverse phenolic 
compounds. The simultaneous linear regression analysis 
on 1338 topological, geometrical and electronic molecular 
descriptors over 200 molecules led to a seven-parameter 
relationship with R = 0.851 and leave more out R1-60%-0t = 
0.730, while a model based on flexible type of descriptors 
improves as R = 0.900 and R1-60%-0 = 0.854. An external 
test set of 50 related derivatives demonstrates that both 
models behave predicatively with rms = 0.418 and rms = 
0.346, respectively, comparing fairly well with previously 
reported Artificial Neural Networks with rms 0.352. 
Finally, they employed the best QSAR equation to 
estimate the aqueous toxicity for 74 non-yet measured 
structures. 
An exploratory study to investigate the possible simple 
descriptors in order to predict relative activity of 
antiepileptic enaminones has been carried out by Garro-
Marinez et al. (2007). In the study, a general structure, 
substituent and activity relationship of the following type 
was fitted to the available ED50 values of cyclic 
enaminone antiepileptic compounds: ED50 = f (structure, 
substituent) = f (d, �). In this relationship, ´structure´ was 
quantified by (d), the distance measured between the 
carbonyl oxygen atom and the first atom of the aromatic 
ring. The ´substituent´ was quantified by the Hammett 
substituent constant (�). With the aid of the above 
function of two independent variables, a new molecular 
structure was predicted by extrapolation that has shown 
about two orders of magnitude  greater  activity  than  the  

 
 
 
 
most active molecule in the original set with measured 
ED 50 values. 

Thomas and Castro have employed theoretical and 
computational techniques for the investigation into con-
formation of the antimalarial agent 1, 2, 3, 5 -tetroxane 
and some derivatives (Thomas and Castro, 2006). In this 
study, they attempted the conformational analysis of 
some compounds of 1, 2, 3, 5 -tetroxane and to evaluate 
three theoretically possible conformers for the compound. 
Among a lot of theoretical methods available, they adopt-
ed a simple theoretical method called self consistent field 
method because it was rather easy to perform and 
require moderate computational facilities and time. The 
results of the analysis were reliable as evident from early 
literature. Moreover, the softwares were available free of 
cost. In this study, they used a freely available software 
package called GAMESS created by Alex A. Granovsky. 
To view the geometry of the molecule, they made use of 
another free software ViewMol3D.exe. The input of the 
molecule is given in the Z-matrix format. 

The anticonvulsant activity of abietic acid has been 
discovered through application of linear discriminant 
analysis (Talevi et al., 2006). Linear Discriminant 
Analysis was performed to derive Discriminant Functions 
based on 2D descriptors and capable of classifying 
anticonvulsant from non-anticonvulsant compounds. 
Through application in virtual screening of the 
Discriminant Function, which performed best in the 
validation steps, abietic acid was identified as a potential 
new anticonvulsant agent. The anticonvulsant activity of 
abietic acid at 30 and 100 mg/kg was confirmed in the 
Maximal Electroshock Test, both orally and intra-
peritoneal. Similarly, Talevi et al. (2006) have applied a 
new similarity-based algorithm based on a previously 
developed model in the classification of two sets of 
anticonvulsant and non-anticonvulsant drugs. Each set is 
composed of (a) anticonvulsant compounds that have 
shown moderate to high activity in the Maximal 
Electroshock Seizure (MES) test and (b) drugs with other 
biological activities or poor activity in the MES test. The 
results from the analysis of variance (ANOVA) indicate 
that the proposed algorithm is able to differentiate 
anticonvulsant drugs. The proposed model may there-
fore, be useful in the identification of new anticonvulsant 
agents through virtual screening of large virtual libraries 
of chemical structures. 
Albesa et al. (2006) have undertaken a theoretical study 
of a family of new quinoxaline derivatives. In this study, 
Hybrid Density Functional Theory (DFT) calcu-lations 
were performed on a series of 21 new quinoxaline 
derivatives, which would likely exhibit important biological 
activities. Optimized geometries, harmonic vibrational 
frequencies and 1H chemicall shifts were reported and 
compared with available experimental data. 

Duchowicz et al. (2006) have applied a QSAR 
treatment to model the potency plC90[mM] of 154 non-
nucleoside reverse transcriptase inhibitors (NNRTI) of the 



 
 
 
 
wild type HIV-1 virus, considered as the second gene-
ration analogues of Efavirenz. In addition, 56 inhibitors of 
the K-103N viral mutant form were also investigated. A 
pool consisting of 1494 theoretical molecular descriptors 
provided mainly by the Dragon 5 software were explored 
resorting to different methods of variable selection: 
Forward Stepwise Regression, the Replacement Method 
and the Genetic Algorithm approach. The optimal models 
found included up to seven parameters with R = 0.7991, 
Rl-20%-0 = 0.7233 for the case of wild type and R = 0.9261, 
Rl-5%-0 = 0.8802 for the K-103N mutation. 

Helguera et al. (2006) have predicted the carcinogenic 
potency (TD50) of a set of 62 nitroso-compounds, 
applying the QSAR theory. A thousand of molecular 
descriptors obtained from the Dragon 2.1 software were 
used in order to model the toxicological property bioassay 
in female rat and considering water as route of 
administration. For building the regression model, three 
different methods of variable selection were used namely 
Forward Stepwise Regression Method, the Genetics 
Algorithms and an alternative of Elimination Method, the 
Replacement method. For the first tine, the Replacement 
Method was used for predicting the carcinogenic potency, 
with the achievement of the best results. The finest 
obtained model had seven variables and was able to 
explain the 84.3% of the experimental variance after 
removing 6 chemicals, which are considered as outliers. 

The QSAR analysis of mutagenicity of 16 dental mono-
mers has been carried out by means of optimal 
descriptors calculated with SMILES (Simplified Molecular 
Input Line Entry System) notation (Castro et al., 2007). 
Statistical characteristics of predictive equations are n = 
11, r2= 0.67, s = 0.59, F = 18 (training set); n = 5, r2 = 
0.87, s = 0.46, F = 20 (test set). 

A virtual prediction of anticonvulsant activity in MES 
test of widely used pharmaceutical and food preserva-
tives, methylparaben and propylparaben has been 
carried out (Talevi et al., 2009). A Discriminant Function 
based on topological descriptors was derived from a 
training set composed of anticonvulsants of clinical use or 
in clinical phase of development and compounds with 
other therapeutic uses. This model was internally and 
externally validated and applied in the virtual screening of 
chemical compounds from the Merck Index. Methyl 
paraben, a preservative widely used in the food, cosme-
tics and pharmaceutical industries was signalled as 
active by the Discriminant Function and tested in mice in 
the Maximal Electroshock (MES) test after ip adminis-
tration. A discriminant function for the prediction of 
anticonvulsant activity in the MES test was generated 
and its ability to select new anticonvulsant agents was 
confirmed through biological tests. The discovery of the 
anticonvulsant activities in the MES test of methyl 
paraben and propylparaben might be useful in the deve-
lopment of new anticonvulsant medications especially 
considering the well known toxicological profile of current 
anticonvulsant drugs. 

Duchowicz   et   al.  (2008)  have  undertaken  a  QSAR 
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modeling of the interaction of flavonoids with GABA (A) 
receptors. Experimentally assigned values to binding 
affinity constants of flavonoids ligands towards the 
benzodiazepine site of the GABA (A) receptor complex 
were compiled from several publications and enabled to 
perform a predictive analysis based on QSAR. The best 
linear model established on 78 molecular structures 
incorporated four molecular descriptors, selected from 
more than a thousand geometrical, topological, quantum-
mechanical and electronic types of descriptors and 
calculated by Dragon software. A practical application of 
this QSAR equation was performed by estimating the 
binding affinities for some newly synthesized flavonoids 
displaying 2-, 7- substitutions in the benzopyrane back-
bone and that still have not experimentally measured 
potencies. 
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