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Human resources in science and technology (HRST) are important for promoting national 
competitiveness. The capacity utilization of HRST refers to the ratio of the amount of output that can be 
produced using the installed productivity capacity to the optimal output. This study uses data 
envelopment analysis (DEA) to measure the capacity utilization of global ten countries. Six HRST 
productivity indexes from the 323 indexes listed in the world competitiveness yearbook published by 
IMD in 2010 were selected as a reference. In the process, a multiple criteria procedure is used to assess 
the performance in these nations. Observing the average efficiency values, Japan is the highest with a 
mean of 1.000. On top of that, Japan has the lowest standard deviation of 0.000. We also can see that 

the total productivity change score ( MPI , Malmquist productivity indexes presented in column 5) is 

higher than one for almost all periods, except for 2008 to 2009 showing that a large proportion of group 
of ten countries experienced gains in total productivity in the five periods considered. The research 
provides evidence which establishes whether benchmarking provides a real and lasting benefit to 
nations. A series of managerial implications are set forth and discussed. 
 
Key words: Malmquist index, window analysis, capacity utilization, data envelopment analysis (DEA). 

 
 
INTRODUCTION 
 
Krueger and Lindahl (2001) asserted that increasing the 
stock of human capital with higher education can promote 
technology improvement and economic growth. 
Simultaneously, developing the technology industry and 
stimulate the national economy. Therefore, with the lot of 
more higher education talent and more people that 
engaged in the work of science and relevant fields, it can 
improve the national competition advantage to heal. 
Productivity is the relationship between output and input. 
Meanwhile,   efficiency  indicates   how   to   produce   the  
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maximum output while using the least amount of 
resource input (Caves et al., 1982). Capacity utilization 
(CU) is a key concern in measuring the productivity and 
efficiency of human resources in science and technology 
(HRST). CU denotes the ratio of actual output level to 
capacity output level, where capacity output level is the 
maximum capacity.  

In this paper we apply a new approach based on 
frontier production function to research the productivity 
growth of human resources in science and technology. 
The research framework is that of data envelopment 
analysis (DEA). Data envelopment analysis (DEA) is a 
nonparametric method in operations research and 
economics for the estimation of production frontiers 
(Jahanshahloo, et al., 2009; Emrouznejad and Shale, 
2009).    It  is  used  to  empirically   measure   productive  



 
 
 
 
efficiency of decision making units. There are also 
parametric approaches which are used for the estimation 
of production frontiers. Under such a competitive 
environment, port performance measurement is not only 
a powerful management tool for port operators, but also 
constitutes a most important input for informing regional 
and national port planning and operations. In order to 
overcome this potential problem associated with an 
analysis based on cross-sectional data, in this paper DEA 
window analysis is, for the first time, applied to the port 
industry to deduce efficiency trends. Then, this paper 

continues conduct Malmquist productivity index ( MPI ) 
to estimate technological changes (Lozanoet al., 2011). 

MPI  is defined using non-parametric distance functions, 
which determine how far a firm is from its optimal 
production given the observed output and applied input. 

MPI  can decomposed the productivity growth into two 
mutually exclusive components: technical efficiency 
change and technical change overtime, which measures 
the change in efficiency frontier shift, respectively (Froot 
and Klemperer, 1989). These are: (i) technical efficiency 
change (E); (ii) technological change (P); (iii) pure 
technical efficiency change (PT); (iv) scale efficiency 
change (S); and (v) total factor productivity (M) change 
(Wang et al., 2008; Azizi and Jahed, 2011). 

The reminder of this paper is as follows; research 
methods, DEA, includes the window analysis and 
Malmquist productivity indexes; introduction of the 
research design, which includes the research framework, 
research procedure and variable measurement and 
sample selection; dicussion of the empirical results; some 
managerial implications and ways of improving efficiency.  
 
 
RESEARCH METHODS 
 
DEA is a mathematical linear programming, approach based on the 
technical efficiency concept, it can be used to measure and analyze 

TE of different entities: productive and non productive, public and 
private, profit and nonprofit seeking firms (Azizi and Ajirlu, 2010; 
Lozano et al., 2011). The main advantages of DEA that make it 
suitable for measuring the efficiency of vehicle inspection agencies 
are: (i) it allows the simultaneous analysis of multiple outputs and 
multiple inputs, (ii) it does not require an explicit a priori 
determination of a production function, (iii) efficiency is measured 
relative to the highest observed performance rather than against 
some average and (iv) it does not require information on prices 
(Odeck, 2000; Azizi and Ajirlu, 2010; Shokouhi et al., 2010). It is a 
non-parametric approach that calculates efficiency level by doing 
linear program for each unit in the sample. DEA measures the 
efficiency of the decision-making unit by the comparison with best 
producer in the sample to derive compared efficiency. 

As we have seen DEA is based on TE concept which is formula 
(1) (Wang et al., 2011): 
 

Technical efficiency ( TE ) =
weighted output

weighted input

∑
∑

             (1) 

 
Mathematically we can express the aforementioned relation  by  the  
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following formula (2) (Wang et al., 2011): 
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kE : TE for the kDMU  (between 0 and 1). 

k : Number of kDMU  in the sample ( 1, ,k K= L ). 

N : Number of the inputs used ( 1, ,i N= L ). 

M : Number of outputs ( 1, ,j M= L ). 

jk
O : The observed level of output j from kDMU  

ikI : The observed level of input i  from kDMU  

iV : The weight of input i  

j
U : The weight of output j  

 

To measure TE for kDMU  by using linear program the following 

problem must be solved which is formula 3 (Odeck, 2000; 
Emrouznejad and Shale, 2009; Wang et al., 2011): 
 

.
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                                                     (3) 

 

Where TE  is either maximizing outputs from given inputs, or 
minimizing inputs for a given level of outputs. The aafore-mentioned 
problem cannot be solved as stated because of difficulties 
associated with nonlinear (fractional) mathematical programming. 
Charnes et al. (1978) have developed a mathematical transfor-
mation which converts the above nonlinear programming to linear 
one. 

Modified linear programming by the following formula (4) (Odeck, 
2000; Emrouznejad and Shale, 2009; Wang et al., 2011): 
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Window analysis 

 

Based on rule of thumb, the number of kDMU  should be greater  
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than double of the sum of inputs and outputs. In order to overcome 

the constraint of limited kDMU  in this study, the window analysis 

method proposed by Charnes et al. (1978) is adopted. Windows 
analysis is a time dependent version of DEA. In order to capture the 
variations of efficiency over time, Charnes et al. (1978) proposed a 
technique called ‘window analysis’ in DEA. Window analysis 

assesses the performance of a kDMU  over time by treating it as 

a different entity in each time period. This method allows for 
tracking the performance of a unit or a process (Soltanifar and Lotfi, 
2011).  

The basic idea is to regard each kDMU  as if it were a different 

kDMU  in each of the reporting dates. Then each kDMU  is not 

necessarily compared with the whole data set, but instead only with 
alternative subsets of panel data. The windows analysis is based 
on the assumption that what was feasible in the past remains 
feasible forever, and that the treatment of time in windows analysis 
is more in the nature of an averaging over the periods of time 
covered by the window (Tulkens et al., 1995; Khodabakhshi, 2010). 
DEA is initially used to analyze cross-sectional data, where a given 

kDMU  is compared with all other kDMU  that produce during 

the same time period and where the role of time is ignored. 
However, this can be rather misleading since a dynamic context 
may give rise to seemingly excessive use of resources that are 
intended to produce beneficial results in future periods. As such, 
panel data prevail over cross-sectional data in that not only do they 

enable a kDMU to be compared with other counterparts, but also 

because the movement of efficiency of a particular kDMU can be 

tracked over a period of time. In so doing, panel data are more 

likely to reflect the real efficiency of a kDMU  (Odeck, 2000; Lin, 

2010; Lozano et al., 2011). 
We briefly introduce the meaning of window analysis. Assume 

there are N alternatives, 1, ,l N= L , and each alternatives has 

data for period 1 to M , 1, ,m M= L . The window length is 

fixed to be K , the data from period 1,2, , KL  will form the first 

row, and the data from period 2,3, , , 1K K +L  will form the 

second row, and so on. One more periods on the right will need to 

be shifted to, and a total of 1M K− + window rows are existed. 

Each window is represented by 1, , 1i M K= − +L , and the 

ith  window consists of the data in periods , , 1.j i i k= + −L  

There are K  sets of data to be evaluated. Therefore, there are a 

total of N K×  kDMU  in that window (Odeck, 2000). 

In order to apply window analysis, DEA is used to evaluate the 

performance of all kDMU  in the same window, and the 

efficiency, ,

l

i j
E , of each DMU will be entered in the right window 

position. The procedure will be repeated 1M K− +  times to 
obtain all the efficiency values in all windows. Window analysis 
used all the efficiency values of an alternative to generate some 

statistics values. There include average efficiency ( lM ), variance 

among efficiencies of alternative l ( )lV , column range ( ,l mCR ), 

and the total range for alternative ( )ll TR  (Charnes et al., 1978).  

 
 
 
 

The average efficiency ( )lM of alternative l  is obtained by the 

following formula (5) (Odeck, 2000; Lin, 2010): 
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The variance among efficiencies of alternative l ,
l

V , is calculated by 

the following formula (6) (Odeck, 2000; Lin, 2010): 
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The variance of efficiency reflects the fluctuation of efficiency 
values for each alternative. If an alternative has higher average 
efficiency and small variance, its ranking can be higher compared 
to other alternatives. 

Column range, ,l m
CR , can be used to compare the fluctuations 

of efficiencies among the alternatives. In each alternative, because 

the data of the first period ( 1)m =  and last period ( )m M= are 

being analyzed in only the first and the 1M K− +  window only 
one efficiency value is obtained for each of the two windows, the 
efficiencies in the first and last periods will not be included in the 

calculation of CR  values. For the other periods, the data of each 

alternative is used at least twice and at least two efficiency values 

are available for calculating CR  values. 

,l m
CR is the difference between the largest and the smallest 

efficiencies for alternative l  in period m by the following formula (7) 

(Froot and Klemperer, 1989; Shahooth and Battall, 2006). 
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,l m
CR  can be used to evaluate the stability of efficiency of an 

alternative in each period. Then, lCR  is the overall column range 

for alternative l , and it shows the greatest variation in efficiency of 

an alternative over different periods by the following formula (8) 
(Shahooth and Battall, 2006; Cullinane et al., 2004): 
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Finally, in order to understand the stability of an alternative over 
different periods, we can use total range to evaluate it. Total range 
is the difference between the maximum and minimum efficiency 
values of alternatives in all windows.  

The total range (TR ) for alternative l  is formula 9 (Cullinane et 

al., 2004; Chang et al., 2007; Wang et al., 2008): 
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Figure 1. The MPI and its components. Source: Odeck (2000). 

 
 
 
Window analysis of DEA has been adapted in many academic 
fields, such as industry analysis. Cullinane et al. (2004) apply DEA 
windows analysis to container port production efficiency. Shahooth 
and Battall (2006) use data envelopment analysis and window 
analysis in measuring and analyzing the relative cost efficiency of 
24 Islamic banking institutions. Chang et al. (2007) applied window 
analysis to analyze dynamical efficiencies of Taiwan’s TFT-LCD 
firms for the period of 2001 to 2005. 

 
 

Malmquist productivity indexes ( MPI ) 

 

The MPI were developed by Caves et al. (1982) based on the 
distance functions developed by Malmquist. Färe et al. decom-
posed the productivity growth into two mutually exclusive 
components: technical efficiency change and technical change 
overtime, which measures the change in efficiency frontier shift, 

respectively (Froot and Klemperer, 1989). The MPI expressed in 
DEA efficiency measures is defined as the ratio of the efficiency 
measures for the same production unit in two different time periods 
or between two different observations for the same period (Odeck, 
2000; Rezitis, 2008).  

The MPI  for any unit between period 0 and 1 with frontier 

technology of period i as a reference, (0,1)iM , can be calculated 

by using DEA measures obtained by solving the LP-problems 
(Odeck, 2000), which is formula 10. 

 

1

0

(0,1) , 0,1i
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E
M i T

E
= = ∈                        (10) 

 

The i is the frontier technology, 0iE  is the input (output) efficiency 

measure for a unit observed in period 0 and 1iE  is input (output) 

efficiency for the same units observed in period 1 with technology i

. The index, (0,1)iM , shows the relative change in technical 

efficiency, and T represents the time period for the kDMU . 

Malmquist productivity indexes are based on nonparametric-
parametric approach, which can capture the productivity change in 
economic growth using specific production function (Azizi and 
Jahed, 2011). The mathematics  concept  is  borrowed  from  Odeck 

(2000) (Figure 1). The denominator shows the proportional 
adjustment of the observed input vector of the unit in period 1 for 
observed outputs to be on the same frontier function (Wang et al., 
2011). The denominator is always between 0 and 1, while the 

numerator can be greater than 1. It follows that when (0,1)
i

M >1, 

then productivity has increased. If (0,1)
i

M < 1 then the productivity 

has decreased and if (0,1)
i

M =1 then productivity is unchanged. 

This holds irrespective of the reference technology (Odeck, 2000; 
Chen and Ali, 2004). Then, we can transform mathematics concept 

into a diagram, which is shown in Figure 1. The first year is 0t  and 

the second year is 1t . The model included one input variable ( x ) 

and one output variable ( y ). In the first year 0t , unit 0K  is 

observed with the combination 0 0( , )y x , the corresponding 

benchmark units on the frontier are 1 0 00( , )K y x and

2 0 10( , )K y x . The efficiency measures 00E and 10E  are equal to 

the ratios 00 0( / )x x and 10 0( , )x x . Therefore, the MPI  can be 

written as follows Equation 11. Equation 11 indicates that the MPI  
is the change in productivity between the two periods (Odeck, 2000; 
Wei et al., 2007; Emrouznejad and Shale, 2009). 

 

1 1 1 1 1
0 1

0 0 0 0 0
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= = =           (11)                          

 

In relation to Figure 1, the MPI  can be decomposed into two 
parts, the first is the technical efficiency change (E) and the second 
is technological change (P), which is formula (12) (Odeck, 2000; 
Worthington, 1999; Pastor and Lovell, 2005).  
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Using these models, and the Fare et al. (1994) approach, it is thus 
possible to provide four efficiency/productivity indices for each firm 
and a measure of technical progress over time. These are: (i) 
technical efficiency change (E) (that is, relative to a constant 
returns-to-scale technology); (ii) technological change (P); (iii) pure 
technical efficiency change (PT) (that is, relative to a variable 
returns-to-scale technology); (iv) scale efficiency change (S); and 
(v) total factor productivity (M) change. Recalling that M indicates 
the degree of productivity change, then if M > 1 then productivity 
gains occur, whilst if M < 1 productivity losses occur. Regarding 
changes in efficiency, technical efficiency increases (decreases) if 
and only if E is greater (less) than one. An interpretation of the 
technological change index is that technical progress (regress) has 
occurred if P is greater (less) than one (Barros, 2008). 

An assessment can also be made of the major sources of 
productivity gains/losses by comparing the values of E and P. If E > 
P then productivity gains are largely the result of improvements in 
efficiency, whereas if E < P productivity gains are primarily the 
result of technological progress. In addition, an indication of the 
major source of efficiency change can be obtained by recalling that 
overall technical efficiency is the product of pure technical efficiency 
and scale efficiency, such that E = PT × S. Thus, if PT > S then the 
major source of efficiency change (both increase and decrease) is 
improvement in pure technical efficiency, whereas if PT < S the 
major source of efficiency is an improvement in scale efficiency.  

There are many different research applied MPI  to evaluate 

the cross-period efficiency. Worthington (1999) employed MPI  
productivity growth is decomposed into technical efficiency change 
and technological change for two hundred and sixty-nine Australian 

credit unions. Odeck (2000) used MPI to analyze efficiency and 
productivity growth of the Norwegian Motor Vehicle Inspection 
Agencies for the period 1989 to 1991. Zheng et al. (2003) 
investigated the productivity performance of SOEs using data 

envelopment analysis and a MPI  based on a sample of about 
600 state enterprises from 1980 to 1994. Chen and Ali (2004) 
proposed new approach not only reveals patterns of productivity 
change and presents a new interpretation along with the 
managerial implication of each Malmquist component, but also 

identifies the strategy shifts of individual 
kDMU  based upon 

isoquant changes. Pastor and Lovell (2005) propose a global 

MPI  that give a single measure of productivity change. Zelenyuk 

(2006) find a theoretically justified method of aggregating MPI  

over individual decision making units into a group MPI . Wei et al. 

(2007) use MPI  decomposition and investigate energy 
efficiency of China’s iron and steel sector during the period 1994 to 

2003. Liu and Wu (2007) used MPI  to analyze the total factor 
productivity change in China’s logistics industry with panel data of 
logistics listed corporation from 1999 to 2006. Liu and Wang (2008) 

employ data envelopment analysis to measure the MPI of 
semiconductor packaging and testing firms in Taiwan from 2000 to 
2003. Barros (2008) estimates changes in total productivity, 
breaking this down into technically efficient change and 
technological change, by means of data envelopment analysis 
applied to the hydroelectric energy generating plants of EDP - the 
Portugal Electricity Company. Rezitis (2008) investigate the effect 
of acquisition activity on the efficiency and total factor productivity of 
Greek banks. 

 
 
RESEARCH DESIGN 

 
In this area, we propose our research framework and describe our 
variable measurement and sample selection. 

 
 
 
 
Research framework 
 
This research tries to measure the capacity utilization of HRST of 
group of ten for the period 2005 to 2010. The outputs to the model 
are three well known measures of overall performance: Skilled 
labor, overall productivity (PPP) and patents granted to residents 
determines the relative efficiencies of the first tier c in our sample in 
using the three inputs, Knowledge transfer, Funding for 
technological development and Total R and D personnel nationwide 
per capita, to generate the thee outputs. This allows identification of 
efficiency differentiators, which proves very useful for inefficient 
countries because it allows them to spot their weaknesses and 
improve performance. This study applies the DEA approach to 
reveal the extent to which inputs can be augmented while 
maintaining the same level of outputs. We employ window analysis 
to find out the long-term effectiveness in productivity. Finally, we 

adopt the MPI  to identify the major source of productivity growth 
and separate the catching effect from efficiency changes over time 

due to technological advancements by using MPI . This study 
uses a DEA model to establish a foundation for measuring the 
efficiency of group of ten. 
 
 
Variable measurement and sample selection 
 
Frontier models require the identification of inputs (resources) and 
outputs (transformation of resources). Several criteria can be used 
in their selection. The first of these, an empirical criterion, is 
availability. Secondly, the literature survey is a way of ensuring the 
validity of the research and thus represents another criterion to be 
taken into account. The samples of this research are group of ten, 
which are Canada, France, Germany, Italy, Japan, Netherlands, 
Sweden, Switzerland, United Kingdom and USA. The period time of 

this research sDMU is from 2005 to 2010. They are 60 totally. 

We use three input variables and three output variables. The input 
variables are knowledge transfer, funding for technological 
development and total R and D personnel nationwide per capital. 
The sources of data are from World Competitiveness Yearbook 
published by IMD in 2010. 

 
 
EMPIRICAL RESULTS 

 
This study uses the mathematical programming 
technique of DEA to estimate and assess CU of HRST. 
The DEA approach is a mathematical programming 
technique in which an optimal solution is determined 
according to a set of constraints. In this area, we conduct 
the window analysis and Malmquist productivity indexes 
analysis.  
 
 
Window analysis 
 
DEA window analysis can be done by excel solver via 
visual Basic application Microsoft Company, 2003 
Microsoft Company, (2003), Excel Seattle, USA. In this 
paper, we assume constant returns to scale; that is, as all 
inputs double, all outputs will double. The window 
analysis enables us to identify the best and the worst 
countries in a relative sense, as well as the most stable 
and    variable  countries  in   DEA   scores.   The   overall  



 
 
 
 

efficiency for each kDMU  is calculated by using CCR  

model, and the DEA window analysis is applied. The 
efficiency scores reported earlier are from panel data 
analyses, where the observations for group of ten in 
different years are treated as separate observations, and 
all measured against each other. This may not be a 
reasonable assumption because of technological 
improvements happening over the 7 year period under 
analysis, and that could make the comparison of units in 
different years unfair or unrealistic. The afore-mentioned 
results indicate this expected general tendency of 
improvements over time. To deal with the problem of 
unfair comparisons occurring when including all 7 years 
in the same analysis, we suggest using a window rather 
than a panel data approach, with a window width of 3 
years. This means that observations are only compared 
to other observations within a 3-year time span.  

The scores for a country in different years within the 
same window show how the efficiency of an industry 
changes from one year to another. The column view 
shows the efficiency for the same year but measured 
against different windows, and illustrates the impact of 
changing the units used to generate the frontier.  

We can get the values of mean, standard division, 
column range and total range from the window analysis 
result. According to the value of mean, we can 
understand the long-term effectiveness in productivity. 
The variance of efficiency reflects the fluctuation of 
efficiency values for each alternative. column range,

,l m
CR , can be used to compare the fluctuations of 

efficiencies among the alternatives. In order to 
understand the stability of an alternative over different 
periods, we can use total range to evaluate it. Total range 
is the difference between the maximum and minimum 
efficiency values of alternatives in all windows.  

The information in Table 1 can be used to compare the 
performance of the different countries as illustrated in 
Figure 2. Figure 2 shows the average efficiency score for 
the different countries for each window in the analysis.   

Observing the average efficiency values, Japan is the 
highest with a mean of 1.000. On top of that, Japan has 
the lowest standard division of 0.000. In a highly variant 
demand changing environment, Japan has a quite 
stabilized performance over the years. 

The second best country is USA. It has relatively high 
efficiency over the periods, and their variances are not 
too big either; therefore, the overall performance of the 
system under USA is quite stabilized too. Regarding the 

CR value, the best country is Japan, and the second best 

is Italy. Japan also has the best TR value of 0.000, 
followed by Italy and USA. 
 
 

Malmquist productivity indexes analysis 
 

Malmquist indices for   the   period   2005   to   2010   are  
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presented in Table 2 for the sample of group of ten. 
Using this information, two primary issues are addressed 
in our computation of Malmquist indices of productivity 
growth over the sample period. The first is the measure-
ment of productivity change over the period. The second 
is to decompose changes in productivity into what are 
generally referred to as a ‘catching-up’ effect (efficiency 
change) and a ‘frontier shift’ effect (technological 
change). In turn, the ‘catching-up’ effect is further 
decomposed to identify the main source of improvement, 
through either enhancements in technical efficiency or 
increases in scale efficiency (Worthington, 1999). 

DEA allows for the estimation of total productivity 
change in the form of the Malmquist index. The results 
are presented in Table 2, with the Malmquist index, 
denoted total productivity change, broken down into 
technically efficient change (the diffusion or catch-up 
component) and technologically efficient change. 
Moreover, we break down technically efficient change 
into pure efficient change and scale-efficient change. The 
group of ten is ranked according to the results of column 
5. 

In Table 2, we can see that the total productivity 

change score (the MPI presented in column 5) is higher 
than one for almost all periods, except for 2008 to 2009 
showing that a large proportion of group of ten countries 
experienced gains in total productivity in the five periods 

considered. The mean MPI  is 1.013, which, since it is 
higher than one, signifies that for the group of ten, total 
productivity increased from 2005 to 2010.  

In Table 3, we can see that the total productivity 

change score (the MPI presented in column 5) is higher 
than one for France, Germany, Italy, Netherlands, 
Sweden, and Switzerland showing that a large proportion 
of the six countries experienced gains in total productivity 

in the period considered. The mean MPI  is 1.013, 
which, since it is higher than one, signifies that for the 
group of ten, total productivity decreased from 2005 to 
2010. The change in the technical efficiency score 
(column 1) is defined as the diffusion of best-practice 
technology in the management of the activity and is 
attributed to investment planning, technical experience 
and management and organization in the Group of Ten. 
For the period under analysis, we can see that it is higher 
than one for Canada, France, Germany, Italy, 
Netherlands, Sweden, Switzerland  and  USA,  signifying 
that there was an increase in technical efficiency in the 
period. However, for Japan, and United Kingdom, the 
change in technical efficiency is lower than one, 
signifying that there was a regression in this respect in 
the period. The breakdown of the score for the change in 
technical efficiency into pure technical efficiency change 
(column 3) and scale-efficiency change (column 4) shows 
mixed results, with some plants obtaining simultaneous 
gains in both areas and others obtaining gains in one, but 
losses in the other. The improvement in pure technical 
efficiency, which signifies an improvement  in  managerial
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Table 1. 2005 to 2010 total efficiency-window analysis. 
 

 2005 2006 2007 2008 2009 2010  Mean efficiency Standard division Total range 

Canada 0.683 0.789 0.842    0.771 0.778 0.0446 0.159 

Canada  0.732 0.772 0.808   0.771    

Canada   0.767 0.802 0.808  0.792    

Canada    0.802 0.808 0.728 0.779    

CR1,m x 0.057 0.075 0.006 0.000 x CR1 0.075   

France 0.766 0.794 0.875    0.812 0.855 0.0417 0.145 

France  0.836 0.871 0.912   0.873    

France   0.828 0.880 0.882  0.863    

France    0.880 0.882 0.858 0.873    

CR2,m x 0.042 0.047 0.032 0.000 x CR2 0.047   

Germany 0.616 0.659 0.700    0.658 0.678 0.0442 0.132 

Germany  0.634 0.662 0.747   0.681    

Germany   0.651 0.733 0.689  0.691    

Germany    0.733 0.689 0.625 0.682    

CR3,m x 0.025 0.048 0.015 0.000 x CR3 0.048   

Italy 1.000 0.991 1.000    0.997 0.998 0.0052 0.016 

Italy  1.000 1.000 1.000   1.000    

Italy   1.000 1.000 1.000  1.000    

Italy    1.000 1.000 0.984 0.995    

CR4,m x 0.009 0.000 0.000 0.000 x CR4 0.009   

Japan 1.000 1.000 1.000    1.000 1.000 0.0000 0.000 

Japan  1.000 1.000 1.000   1.000    

Japan   1.000 1.000 1.000  1.000    

Japan    1.000 1.000 1.000 1.000    

CR5,m x 0.000 0.000 0.000 0.000 x CR5 0.000   

Netherlands 0.693 0.830 1.000    0.841 0.907 0.1000 0.307 

Netherlands  0.794 0.925 1.000   0.906    

Netherlands   0.917 1.000 0.950  0.956    

Netherlands    1.000 0.950 0.825 0.925    

CR6,m x 0.036 0.083 0.000 0.000 x CR6 0.083   

Sweden 0.628 0.648 0.764    0.680 0.694 0.0557 0.1484 

Sweden  0.616 0.713 0.764   0.697    

Sweden   0.704 0.754 0.672  0.710    

Sweden    0.754 0.672 0.639 0.688    

CR7,m x 0.032 0.061 0.010 0.000 x CR7 0.061   

Switzerland 0.594 0.592 0.664    0.616 0.635 0.0383 0.121 

Switzerland  0.565 0.625 0.686   0.625    

Switzerland   0.612 0.673 0.655  0.647    

Switzerland    0.673 0.655 0.631 0.653    

CR8,m x 0.027 0.051 0.014 0.000 x CR8 0.027   

United Kingdom 0.920 0.913 0.980    0.938 0.908 0.0667 0.221 

United Kingdom  0.866 0.915 0.981   0.920    

United Kingdom   0.902 0.975 0.855  0.911    

United Kingdom    0.975 0.855 0.760 0.863    

CR9,m x 0.047 0.078 0.006 0.000 x CR9 0.078   

USA 1.000 0.978 1.000    0.993 0.995 0.0119 0.037 

USA  0.963 1.000 1.000   0.988    

USA   1.000 1.000 1.000  1.000    

USA    1.000 1.000 1.000 1.000    

CR10,m x 0.014 0.000 0.000 0.000 x CR10 0.014   
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Figure 2. Window analysis result. 

 
 
 

Table 2. Malmquist productivity index summary of annual means. 
 

Country Efficiency change 
Technological 

change 
Pure efficient 

change 
Scale-efficient 

change 
Total productivity change 

score ( MPI ) 

2005-2006 1.012 1.057 1.004 1.008 1.069 

2006-2007 1.017 1.033 1.026 0.991 1.050 

2007-2008 0.997 1.011 0.955 1.045 1.008 

2008-2009 1.011 0.895 1.055 0.958 0.904 

2009-2010 1.017 1.022 1.006 1.011 1.039 

Mean 1.011 1.002 1.008 1.002 1.013 

 
 
 

Table 3. Malmquist productivity index summary of countries means. 
 

Country Efficiency change 
Technological 

change 
Pure efficient 

change 
Scale-efficient 

change 

Total productivity change 

score ( MPI ) 

Canada 1.000 0.998 1.000 1.000 0.998 

France 1.043 0.991 1.042 1.001 1.033 

Germany 1.030 0.990 1.039 0.992 1.020 

Italy 1.026 1.004 1.000 1.026 1.030 

Japan 0.995 0.992 1.000 0.995 0.988 

Netherlands 1.017 1.009 1.004 1.013 1.027 

Sweden 1.000 1.012 1.000 1.000 1.012 

Switzerland 1.000 1.031 1.000 1.000 1.031 

United Kingdom 0.995 0.997 1.000 0.995 0.992 

USA 1.000 0.996 1.000 1.000 0.996 

Mean 1.011 1.002 1.008 1.002 1.013 

 
 
 
skills, shows that there was investment in organizational 
factors associated  with  the  management  of  plants, 
such as a better balance between inputs and outputs, 
best-practice initiatives, more accurate reporting, an 
improvement in quality, and so on. The scale efficiency, 
which is the consequence of size, increases in the  period 

for many plants, due to the increase in capacity utilization 
(Barros, 2008). It is important to note that the mean 
amount of technical efficiency improvement is 1.011 
(mean), the mean value of pure technical efficiency 
change is 1.008 and the mean value of scale-efficiency 
change is 1.002.  
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Technological change (column 2) is the consequence of 
innovation, that is, the adoption of new technologies, by 
best-practice hydroelectric plants (Barros, 2008). Its 
mean value is 1.002, and this index is lower than one for 
some group of ten. The value of technological change is 
larger than one for Italy, Netherlands, Sweden and 
Switzerland. This indicates that innovation improved in 
the period for Italy, Netherlands, Sweden and 
Switzerland, meaning that there was investment in new 
technologies (methodologies, procedures and 
techniques) and in the commensurate skills upgrades 
related to this. However, regarding the Canada, France, 
Germany, Japan, United Kingdom and USA showing a 
downward movement in terms of technological change, 
this is a primary area of concern. 
 
 
Conclusions 
 
The study analyzes the capacity utilization of HRST of 
group of ten for the period 2005 to 2010. Capacity is 
defined as the ability of a firm or industry to produce a 
potential output (Vestergaard et al., 2003). The study has 
indicated how to use DEA approach to identify individual 
year that are less efficient to other comparable year in 
terms of output factors relative to input factors. The most 
recent style in measuring efficiency is data envelopment 
analysis, which is a linear program approach based on 
this concept. Data envelopment analysis measures the 
efficiency of decision making units by doing linear 
program for each in comparison to other units. 
Accordingly the decision making units lie on frontier curve 
is efficient in choosing the optimal mixture of inputs to 
achieve the aimed level of outputs. Besides we make use 
of data envelopment analysis to advise inefficient units by 
doing certain change in inputs and /or outputs to improve 
their efficiencies. 

This paper applies DEA windows analysis in order to 
determine the efficiency of capacity utilization of HRST of 
group of ten over time. This approach is advocated in 
favor of the commonly used cross-sectional data 
analysis. We have shown how this approach enables the 
calculation of efficiency scores even for a small number 
of different units and a fairly large number of variables. 
We can use DEA Window Analysis to evaluate the 
efficiency of different countries under a long term and 
obtain a best industry that is relatively more efficient for 
performance. The issue of how same period efficiencies 
should be defined in a window analysis was discussed 
and illustrated empirically. In a situation which industries 
has made a recent investment to achieve beneficial 
results in the future, or simply just as a result of random 
effects, the traditional cross-sectional approach may 
produce misleading results. Observing the average 
efficiency values, Japan is the highest with a mean of 
1.000. On top of that, Japan has the lowest standard 
division of 0.000. In a highly   variant   demand   changing  

 
 
 
 
environment, Japan has a quite stabilized performance 
over the years. The second best country is USA. It has 
relatively high efficiency over the periods, and their 
variances are not too big either; therefore, the overall 
performance of the system under USA is quite stabilized 

too. Regarding the CR value, the best country is Japan, 

and the second best is Italy. Japan also has the best TR

value of 0.000, followed by Italy and USA. 
Then, we conduct DEA Malmquist productivity 

approach to identify the major source of productivity 
growth and separate the catching effect from efficiency 
changes over time due to technological advancements. 
The DEA Malmquist productivity approach shows that in-
depth information can be obtained by analyzing each 

individual component of MPI . Such analyses are 
sometime very critical in capturing an industry’s 
performance comprehensively. Through an analysis of 

the components of the MPI , we reveal the managerial 
implication of each component. The results from these 

analyses are then further examined using the MPI  
approach and its decomposition. Hence we saw the 
separation of the catching up effect from the frontier shift, 
and we clearly observed how the frontier shift is the 
determinant for productivity growth, with the catching up 
being neutral or negative depending on the assumptions 

used. From the results of MPI , we know that industrial 
industrialist not only enhance their managerial skills but 
also increase and improve innovative performance and 
upgrade technology level. 

Canada and New Zealand have super competitiveness. 
Canada’s educational environment is especially strong. 
Both countries are behind in the investment and 
productivity factors. Among all global 10, these two 
countries perform inadequately and there is special need 
to increase research funding. 

Research investment is greatest in Sweden, making 
that country highly competitive. However, Sweden needs 
to increase its productivity. Investment and productivity 
factors suggest fair performances in the UK and France, 
but both countries lack technical infrastructure, especially 
in the ‘‘scientific interest in youth’’ factor. As long as that 
remains underdeveloped, it will stunt the competitiveness 
of their technological human capital. Italy and Spain have 
room for improvement in several areas, as their 
technological human capital competitiveness is quite 
weak. By focusing on its geographical advantages as 
critical  strategies  for  development, the  Netherlands has 
expanded its economic abilities and utilized its human 
resources in the European Union. 

It is no surprise that the USA and Japan have a high 
degree of HRST competitiveness. American policies are 
geared toward maintaining the country’s position of 
technological leadership. Since the 1980s, a series of 
laws has intensified research regarding new network 
systems, and other policies encourage management 
innovations    that      support       government     research 



 
 
 
 
organizations and universities, as well as methods of 
technology transfer and dissemination to the industrial 
sector. Well-defined intellectual property rights that pro-
tect research results encourage industries to cooperate 
and invest in smaller high-tech companies. Japan’s 
extensive investment into research and human capital 
drives that country’s research efficiency. This in turn 
generates superb human capital competitiveness. 
Germany also generates high productivity. The 
infrastructure criteria for Germany suggest that it will 
continue strengthening its infrastructure, especially in the 
educational sector, with comprehensive policies to 
continue the current pace of growth. 

There are two extensions to which this study can be 
undertaken. Firstly, although the input side of the DEA 
model considered all relevant input dimensions in our 
industry, the output side bears re-examination. Our study 
only considered two industry performance measures 
(namely, number of patents and annual sales) due to 
certain limitations in the sample size associated with DEA 
implementation. Future studies should consider a more 
extensive set of business performance measures. Of 
particular interest would be a DEA model incorporating 
market-oriented measures such as market share and 
sales growth. 

Secondly, in evaluating the relative efficiency scores 
using DEA, we did not restrict any input or output 
weights. This may affect the results if certain input or 
output measures are more important than others. In 
future research, it may be interesting to identify such 
weights to reflect relative importance and integrate them 
into the analysis. This would provide more robust results 
and conclusions. 
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