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Gradient elasticity models have been proposed in recent years in order to describe phenomena that 
cannot be described by classical elasticity models. In this contribution, the finite element model is 
conducted within the context of non-classical continuum mechanics, by introducing a material length 
scale parameter. The finite element method for the Euler-Bernoulli beam model is applied for the 
buckling analyzes of micro/nanobeams with the additional boundary conditions. Gradient elasticity 
stiffness and stability matrices are calculated to solve beam buckling problems. A qualitative 
discussion is given on this calculation process. The study contains two major parts, namely, finite 
element modeling of gradient elastic beams with the additional boundary conditions and gradient 
elasticity theory based approach for predicting buckling behavior of nanostructures. The gradient 
elasticity solutions are compared with their classical counterparts. The results illustrate the small 
length-scale effect in the stability expression or the surprisingly stiffening effect against buckling for 
some classes of beam buckling problems. The aim of this paper is to introduce some scale effects to 
derive relevant structural models which applies to nanostructures.  
 
Key words: Carbon nanotubes, gradient elasticity, finite element method, additional boundary conditions, 
nanobeams. 

 
 
INTRODUCTİON 
 
Nanotechnology covers a broad range of topics in the 
field of applied sciences. The small-size effect and nano-
scale surface effect associated with nanotechnology 
become significant and consequently the classical 
continuum theory can not predict the behavior of the 
nano-scale structures. Understanding the mechanism of 
how the size effects modulate the mechanical properties 
is fundamental to many potential applications of 
nanostructures and devices, especially for small-scale 
beam-like structures. Though researchers have 
commonly adopted the classic beam theories (Wong et 
al., 1997; Poncharal et al., 1999; Treacy et al., 1996; 
Krishnan et al., 1998; Ru, 2004) to treat the mechanical 
behavior of nanobeams, these theories essentially fail to 
capture the size-dependent properties of nanobeams.  

Classical (local) continuum constitutive models possess 
no material/intrinsic length scale. The typical dimensions 
of length that appear in the corresponding boundary 
value problems are associated with the overall geometry 
of the domain under consideration. Although, the classical 

continuum models are efficient in carbon nanotubes 
mechanical analysis through relatively simple formula, its 
applicability to identify the small-scale effect on CNT's 
mechanical behaviors is questionable. The limitation of 
the applicability of the classical or local continuum modes 
at small length scales is partly due to the fact that the 
classical modeling does not admit intrinsic size 
dependence in elastic solutions of inclusions and 
inhomogeneities. Various size-dependent continuum 
theories, which capture small scale effects such as 
couple stress elasticity theory, strain gradient theory, 
modified couple stress theory are reported. 

The authors attention was in fact focused on the search 
of an exact or closed form solution for a practical, even 
though very simple, mechanical problem and this is to 
provide a reference solution for numerical approaches. 
We should bear in mind that all methods of nano scale 
analysis are essentially concerned with solving the basic 
differential equations of equilibrium and compatibility, 
although,   in   some  of  the  methods  this  fact  may   be  



 
 
 
 
obscured. Analytical solutions are limited to the cases 
where the load distribution, section properties and  
boundary conditions can be described by mathematical 
expressions. However, the numerical analysis methods 
are generally more practical for complex structures. Five 
general classes of numerical methods are available for 
solving ordinary and partial differential equations 
encountered in the various branches of science and 
engineering: finite-difference, finite-volume, finite 
element, boundary element, spectral and pseudo-spectral 
methods. Among these methods, Finite Difference 
Method (FDM), Rayleigh-Ritz Method, Galerkin Method, 
Least-Squares Method, Finite Element Methods (FEM) 
have dominated the applications to problems in 
engineering.   

Beams of micro/nano dimensions are extensively used 
as sensors in various micro/nano technology 
applications, as well as for interpreting experimental 
measurements for material constants (e.g. elastic moduli) 
and assessing small scale phenomena (e.g. interfacial/ 
internal stresses). The gradient or micro/nano elasticity 
relations can be used to revisit various classical strength 
of materials or structural mechanics relationships and 
derive new modified ones, more suitable for design 
requirements of micro/nano components and devices. 
Two well-known approaches are the gradient approach, 
where higher order strain gradients are included in the 
strain energy density, and the Cosserat approach, where 
additional degrees of freedom of point rotation are 
considered along with the usual translational ones. Both 
theories result to additional, higher order terms in the 
governing equations and are, as a result, more 
complicated to treat numerically with the finite element 
method than classical elasticity. Gradient elasticity, in 
particular, contains strain gradient terms in the virtual 

work expression, leading to the requirement for 1C  

interpolation if the displacement field only is discretised. 
Appropriate elements exist and perform very well, 
however the approach is often seen as complicated 
and/or computationally costly. Cosserat elasticity is 
simpler to implement, as the additional terms can be 
treated using standard shape functions. With respect to 
the application of Cosserat type elastic theories for 
interpreting size effects in torsion and bending of elastic 
materials with microstructure. 

In this paper, a simple and practical method of the 
analysis of the finite element method by using gradient 
elasticity is presented. A qualitative discussion is given 
on the finite element formulation of gradient elasticity 
beams. Gradient elasticity stiffness matrix and stability 
matrix are calculated to solve beam buckling problems. A 
representative example is presented in order to assess 
the effect of the microstructure on the response of 
gradient elastic components to buckling loading. The 
modest goal of this article is to show that the finite 
element model conducted within the context of non-
classical  continuum  mechanics  can indeed be extended  
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to describe buckling problems at the micro/nano regime. 
 
 
Gradient elasticity nanobeam model 
 
The literature on gradient elasticity theories is very rich, 
and many different versions of gradient elasticity have 
been formulated over the past decades. In order to 
describe and model the size effects, several strain 
gradient theories have been presented (Fleck and 
Hutchinson, 1993; Fleck and Hutchinson, 1997; Aifantis, 
1984; Gao et al., 1999; Chen and Wang, 2001). In the 
strain gradient theories, several length parameters are 
included, and through them, the size effects are predicted 
and characterized. However, since the strain gradient 
terms are included in the constitutive equations and the 
displacement gradient terms appear in the boundary 
conditions, considerable complications and difficulties 
were encountered in solving the related problems (Engel 
et al., 2002; Shu et al., 1999; Matsushima et al., 2002). 

Researchers have also extended Eringen’s nonlocal 
theory of elasticity to elucidate the size-dependent 
mechanical properties. The most general form of the 
constitutive equation for nonlocal elasticity involves an 
integral over the entire region of interest. This integral 
contains a kernel function which describes the relative 
influences of strains at various locations on the stress at 
a given location. An exact or approximate solution for the 
nonlocal integral function can be determined in some 
very special circumstances using the Green function and 
hence its use is rather limited. Although an equivalent but 
approximate expression of the nonlocal stress in a 
differential form was also derived by Eringen for different 
nonlocal moduli, this differential nonlocal stress relation 
seemed not to have attracted the attention for some time. 

The Bernoulli/Euler beam model is based on the 
assumption that the beam consists of fibers parallel to the 
x axis, each in a state of uniaxial tension or compression. 
The same approach is used herein with the uniaxial 
Hooke's law replaced by  
 

2

0( ) ( ) ( ) = ( )x e a x E x       (1) 

 

where ( )x  is the axial stress, ( )x  is the axial strain, 

E  is Young's modulus, a  is the internal characteristic 

length, and 0e  is a constant. The small deflection 

Bernoulli/Euler relation between strain and curvature is  
 

( ) = ( )x yv x   (2) 

 
where v  denotes the beam's transverse displacement. 

Combining Eqs. (1) and (2) gives  
 

2

0( ) ( ) ( ) = ( )x e a x Eyv x     (3) 
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The moment resultant of the corresponding stress 
distribution, and indicates that  
 

=
A

M ydA  (4) 

 

Multiplying Equation (1) by ydA  and integrating the 

result over the area A  yields 
  

2

0( ) ( ) ( ) = ( )M x e a M x EIv x   (5) 

 
Where;  
 

2=
A

I y dA  (6) 

 
This model is an integral nonlocal model. There is an 
alternate interpretation of Equation (5).  
Expansion of the general integral constitutive equation of 

nonlocal elasticity for 0 / << 1e a L , retention of only the 

first two terms, and simplification to the case of uniaxial 
stress produces (Peddieson et al., 2003);  
 

2

0( ) = ( ( ) ( ) ( ))x E x e a x    (7) 

 
Substituting Equations (2) into Equation (7), substituting 
the result into Equation (4), performing the indicated 
integration, and using Equation (6) leads to  
 

2 (4)( ) = ( ( ) ( ))M x EI v x v x   (8) 

 

where 
2

0 =e a  . It can also be noted that the local 

Bernoulli/Euler beam model can be obtained by setting 

the parameter 
2  identically equal to zero and the 

governing equation for the elastic buckling behavior of a 
gradient elasticity beam is 
 

(4) 2 (6) (2)( ( ) ( )) ( )) = 0EI v x v x Pv x    (9) 

 
The equation for an Euler-Bernoulli beam is expressed in 
terms of only one unknown, namely, the deflection of the 
beam, and neglects the effect of transverse shear 
deformation. Equation (9) can be thought of as 
constituting a "strain gradient" form of the Bernoulli/Euler 
beam model. 

Equation (9) is of higher order than that of the local 
Bernoulli/Euler beam model and its solution would require 
additional boundary conditions which are not physically 
obvious. The gradient elasticity model based on Equation 
(9) of the present study has been investigated by Kumar 
et al. (2008).  

 
 
 
 
VARIATIONAL PRINCIPLES FOR GRADIENT ELASTIC 
BEAMS 
 
Weak formulation of the gradient elasticity beam 
 
Compared  to  classical  elasticity,  there  are  two  issues  
that  need  to  be  addressed  in  gradient  elasticity.  
Firstly,  the numerical  discretisation  with  finite  elements  
is  less  straightforward  than  classical  elasticity,  which  
is  due  to  the additional spatial derivatives that are 
included in the differential equations. Secondly,  through  
the  introduction  of  the  higher-order  derivatives  
additional  constitutive  coefficients  have appeared that 
must be identified and quantified, which will be discussed 
briefly in this section. All possible boundary conditions 
(classical and non-classical) can be obtained with the aid 
of variational formulations of the problems associated 
with these components. Thus, well posed boundary value 
problems can be solved. 

The weak formulation of Equation (9) contains two 
types of expressions: those involving both the dependent 
variable v  and the weight function w , and those 

involving only the latter. Multiplying Equation (9) by w  

and integrate over the domain  

 
4 6 2

2

4 6 20
( ) = 0

L d v d v d v
w EI EI P

dx dx dx
    (10) 

 
and integrating by parts  
 

2 2 3 3
2

2 2 3 30 0

3 2

0 0 03 2

5 4 2 3
2 2 2

0 0 05 4 2 3

0 = ( ) ( )

| | |

| | |

L L

L L L

L L L

d w d v d w d v dw dv
EI EI dx P dx

dx dx dx dx dx dx

dv d v dw d v
Pw EIw EI

dx dx dx dx

d v dw d v d w d v
EI w EI EI

dx dx dx dx dx



  

 

  

  

 

 (11)

 

 

We shall denote these types of expressions by ( , )B w v .  

 
2 2 3 3

2

2 2 3 30 0
( , ) = ( ) ( )

L Ld w d v d w d v dw dv
B w v EI EI dx P dx

dx dx dx dx dx dx
      (12) 

 
Presented Equation (11) is a weak derivation of the 
governing equations and boundary conditions for the 
beams based on gradient elasticity theory and The 
Bernoulli/Euler beam theory. From Equation (11), small 
scale effect essential boundary conditions for a gradient 
elastic beam are  
 

3 3

=0 = =0 = =0 =3 3
| = 0   | = 0   | = 0   | = 0   | = 0   | = 0x x L x x L x x L

dv dv d v d v
v v

dx dx dx dx
  (13) 



 
 
 
 
Interpolating functions for gradient elastic beams 
 
The variational form of Equation (11) requires that the 
interpolation functions of an element be continuous with 
nonzero derivatives up to order three. The approximation 
of the primary variables over a finite element should be 
such that it satisfies the interpolation properties that it 
satisfies the essential boundary conditions  
 

1 1 2 1 1 2 1 1 2( ) =    ( ) =    ( ) =    ( ) =    ( ) =    ( ) =e e e e e ew x v w x v x x x x          (14) 

 
In satisfying the essential boundary conditions (14), the 
approximation automatically satisfies the continuity 
conditions. Hence, we pay attention to the satisfaction of 
(14), which form the basis for the interpolation procedure. 

Since there is a total of six conditions in an element 
(three per node), a six-parameter polynomial must be 
selected for v :  

 
5 4 3 2

6 5 4 3 2 1( ) =w x c x c x c x c x c x c      (15) 

 
Note that the continuty conditions are automatically met 
since the existence of a nonzero third derivative of v  in 

the element. The next step involves expressing ic  in 

terms of the primary nodal variables 
 

3

1 2 = 3 =3

3

4 1 5 = 6 =31 1

( )   ( ) |    ( ) |    

( )   ( ) |    ( ) |

e e e

e x x x x
e e

e e e

e x x x x
e e

dw d w
v w x v v

dx dx

dw d w
v w x v v

dx dx


 

    

    

 (16) 

 
Such that the conditions (14) are satisfied  
 

5 4 3 2

1 6 5 4 3 2 1= ( ) =e

e e e e e ev w x c x c x c x c x c x c    
          

(17) 

  

4 3 2

2 = 6 5 4 3 2= ( ) | = 5 4 3 2e

x x e e e e
e

dw
v c x c x c x c x c

dx
      (18) 

  
3

2

3 = 6 5 43
= ( ) | = 60 24 6e

x x e e
e

d w
v c x c x c

dx
      (19) 

  
5 4 3 2

4 1 6 1 5 1 4 1 3 1 2 1 1= ( ) =e

e e e e e ev w x c x c x c x c x c x c         
 
(20) 

  

4 3 2

5 = 6 1 5 1 4 1 3 1 2
1

= ( ) | = 5 4 3 2e

x x e e e e
e

dw
v c x c x c x c x c

dx
   


       (21) 

  
3

2

6 = 6 1 5 1 43 1
= ( ) | = 60 24 6e

x x e e
e

d w
v c x c x c

dx
 


     (22) 

 
Matrix form of above equations  
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2 3 4 5
11

2 3 4
22

2
33

2 3 4 5
44 1 1 1 1 1

2 3 4
55 1 1 1 1

2
66 1 1

1

0 1 2 3 4 5

0 0 0 6 24 60
=

1

0 1 2 3 4 5

0 0 0 6 24 60

e

e e e e e

e

e e e e

e

e e

e

e e e e e

e

e e e e

e

e e

cv x x x x x

cv x x x x

cv x x

cv x x x x x

cv x x x x

cv x x

    

   

 

   
   

       
     
   
   
       
   
        


 
 
 
 
 
 
  
 

  (23) 

 

Inverting this matrix equation to express ic  in terms of 

1

ev , 
2

ev , 
3

ev , 
4

ev , 
5

ev  and 
6

ev , and substituting the result 

into (15), we obtain 
  

6

1 1 2 2 3 3 4 4 5 5 6 6

=1

( ) = =e e e e e e e e e e e e e e e

j j

j

w x v v v v v v v            (24) 

 

and the interpolation functions 
e

i  in Eq.(24) can be 

expressed in terms of the local coordinate x   

 
5 4 2 5 4 2

1 25 4 2 4 3

5 5 5 7
= 1      =

2 2 2 4 4

e e

e e e e e e

x x x x x x
x

h h h h h h
         (25) 

  
25 4 3 5 4 2

3 42 5 4 2

7 5 5
=       =

24 48 16 6 2 2

e ee

e e e e e

x hx x x x x x

h h h h h
       (26) 

  
25 4 2 5 4

5 64 3 2

5 3
=       =

2 4 4 24 16 48

e e e

e e e e e

x hx x x x x

h h h h h
       (27) 

 

Where 1 =e e ex x h  .  

 
 
EIGENVALUE ALGORITHM 
 
The determination of the eigen values is of engineering 
as well as mathematical importance. In structural 
problems the eigen values denote either natural 
frequencies or buckling loads. In this section, we develop 
finite element models of eigenvalue problem for the 
buckling loads. The study of buckling of beam-column 
leads to an eigenvalue problem.  
 
 
Finite element model 
 
Finite element model of the nonlocal beam is obtained by 
subsitituting the finite element interpolation (24) for w  

and the j .  
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Figure 1. A simply supported beam subject to an axial loading. 

 
 

2 32 36 6
21

2 2 3 3
=1 =1

6 6
1

=1 =1

0 = ( ( ) )

( ( ) )

e ee e
j j ee i i

j
x
ei j

ee
j ee i

j
x
ei j

d dx d d
EI EI dx v

dx dx dx dx

dx d
P dx v

dx dx

  












 

 
 

         (28) 

 
where  
 

2 32 3
21 1

2 2 3 3
= ( )       = ( )

e e ee e e
j j je ee ei i i

ij ij
x x
e e

d d dx xd d d
K EI EI dx G P dx

dx dx dx dx dx dx

    
  

             (29) 
 

Note that the coefficients 
e

ijK  and 
e

ijG are symmetric: By using interpolating functions 
e

ijK  can be written as 

 

   2 2 2 25 17 168 5 168 172 260 85 60 85

5 4 2 5 4 2168 1687 14 7 14

2 2 2 260 85 113 30 85 60 57 30

4 2 3 2 4 328 336 2814 14

[ ] =

b h b h
e eb b

b b
h h h h h h
e e e e e e

bh
eb b b b

h hh h h h h he ee e e e e e

eK

 
 

   

    
    
      
   

      
         
          
     

 

   

336

2 33 2 840 2311

168 336 6720 8 168 336 20160

2 2 2 25 168 17 5 17 1682 285 60 85 60

5 2 4 5 2 4168 1687 14 7 14

260 85

4 214

bh
e

b h hbh h h bh e eb be e e eb

b h b h
e eb b

b b
h h h h h h
e e e e e e

b
h h
e e



 
 




  
  
 

  
    
  
 

    
      
      
   


 



 

2 2 257 30 85 60 113 30

3 2 4 328 336 28 33614

2 3 3 2840 23 11

168 336 20160 168 336 6720 8

bh bh
e eb b b

h hh h h he ee e e e

b h hbh bh h he eb be e e eb

  

 

      
          
             
      

 
    
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

  (30) 
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where =b EI  is constant, 
eh  is the elements length. The coefficient matrix 

e

ijG  is known as the stability matrix. By 

using interpolating functions 
e

ijG  can be written as 

  
2 2

3 3

2 3 5 2 3 5

2

155 29 155 29

126 252 1512 126 252 1512

71 13 1329 29

252 504 7560 252 504 945

13 13 11

1512 7560 362880 1512 945 362880
[ ] =

155 29 155 29

126 252 1512 126 2

e e

e e

e e e e

e e e e e e

e

e

e e

Ph PhP P P P

h h

Ph Ph Ph PhP P

Ph Ph Ph Ph Ph Ph

G
PhP P P P

h h

  

  

  

 
2

3 3

2 3 5 2 3 5

52 1512

13 71 1329 29

252 504 945 252 504 7560

11 13 13

1512 945 362880 1512 7560 362880

e

e e e e

e e e e e e

Ph

Ph Ph Ph PhP P

Ph Ph Ph Ph Ph Ph

 
 
 
 
 
 
 
 
 
 

 
 
 
   
 
 
   
                (31)

 

 
 

 

A beam subject to an axial loading 
 
In this section a representative example is presented in 
order to assess the effect of the microstructure on the 
response of gradient elastic components to citical 
buckling load.  

Consider the beam shown in Figure 1. The differantial 
equation (9) is valid. We will use one Euler-Bernoulli 

element in the half beam. Since EI  is element wise 
constant, the element stiffness matrix is given by 
Equation (30) and the stability matrix is given by Equation 

(31). Because of the symmetry about = 0.5x L , we 

consider only half of the beam for finite element 
modeling. In this case, the boundary condition at 

= 0.5x L  is / (0.5 ) = 0v x L  . Determination of the 

values of the parameter P  such that the equation  
 

( ) = ( )K v PG v   (32) 

 

Where K  and G  denote linear differantial operators, 

has nontrivial solutions v  is called an eigenvalue 

problem. The values of P  are called eigen values and 

the associated functions v  are called eigenfunctions. The 

characteristic polynomial of the above eigen value 
problem is obtained by setting the determinant of the 
coefficient matrix equal to zero 
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or  
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The smallest value of P  called the critical buckling load 

crP   
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Where 1C , 2C , 3C  and 4C  constants can be listed as 

follows  
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Figure 2 shows a comparison about critical buckling 
loads  of  the  finite  element  method  solution in gradient  
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Figure 2. Comparison about critical buckling loads of the finite element method solution in gradient elasticity with 

the finite element method solution in classical elasticity of a simply supported beam. 

 
 
 
elasticity with the finite element method solution in 
classical elasticity of a simply supported beam.   

 
 
CONCLUSIONS 

  
Present work has developed that the non classical 
continuum mechanics is combined with the finite element 
method to simulate the mechanical properties of the 
carbon nanotubes and nanostructures. The study 
contains two major parts, namely, finite element modeling 
of gradient elastic beams with the additional boundary 
conditions and gradient elasticity theory based approach 
for predicting buckling behavior of nanostructures. The 
governing equations of equilibrium for gradient elastic 
beams are derived and found to be ordinary for beams 
differential equations of an order which is higher by two 
than in the corresponding classical cases. As a result of 
that, one expects additional non-classical boundary 
conditions to the classical ones for a well posed boundary 
value problem. All possible boundary conditions (classical 
and non-classical)can be rationally obtained with the aid 
of variational principles. Gradient elasticity interpolation 
functions, stiffness and stability matrices are calculated 
by using geometrical boundary conditions. A 
representative example is presented in order to assess 
the   effect  of  the  microstructure  on  the    response   of 

gradient elastic components to critical buckling load. The 
results illustrate that the finite element method is 
successfully applied to analyze the nanomechanical 
characteristics of nanostructures and the small length-
scale effect in the stability expression surprisingly 
stiffening effect against buckling for some classes of 
beam buckling problems. It is hoped that this paper will 
pave the way toward a better understanding of the 
application of non classical continuum models in the finite 
element method analysis of carbon nanotubes and 
nanostructures. 
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