On topological covering-based rough spaces

Bin Chen¹* and Jinjin Li²

¹School of Mathematics, University of Jinan, Jinan 250022, P. R. China.
²Department of Math., Zhangzhou Normal University, Fujian 363000, P. R. China.

Accepted 14 June, 2011

Rough set theory, a mathematical tool to deal with vague concepts, has originally described the indiscernibility of elements by equivalence relations. Covering-based rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as subbase, neighborhood and separation axioms have been applied to study covering-based rough sets. However, the topological space on covering-based rough sets and the corresponding topological properties on the topological covering-based rough space are not studied. This paper studies some of these problems. We defined open sets, closed sets, rough inclusion, rough equality on covering-based rough sets and some of their properties are studied. Then, we give the definition of topology on covering-based rough sets. Finally, we study the properties of rough homeomorphisms. This research not only can form the theoretical basis for further applications of topology on covering-based rough sets but also lead to the development of the rough set theory and artificial intelligence.

Key words: Topology, rough Sets, covering, artificial Intelligence.

INTRODUCTION

Rough set theory, proposed by Pawlak (1982), is a new mathematical approach to deal with imprecision, vagueness, and uncertainty in data analysis and information systems. The classical rough set theory is based on equivalence relations. However, the requirement of equivalence relations as the indiscernibility relation is too restrictive for many applications. In light of this, a method is the relaxation of the partition arising from equivalence relation to a covering. The covering of a universe is used to construct the lower and upper approximations of any subset of the universe. Since then, a lot of mathematicians, logicians, and researchers of computers have become interested in the rough theory and have done a lot of research work of rough theory in theory and application. Its applications are showed in wide fields such as data mining, process control, pattern recognition and artificial intelligence. Recently, Serkan and Ozelik (2010) provide an application of rough set theory in topology course and Serkan (2010) showed that rough set approximate can be used for the analysis of attitude scales.

We know information play an important role in our life. El-Naschie (1992) pointed to the uncertainty of information in quantum space-time. The works about importance of information analysis in physics can be found in Witten (1996).

The topology is to study the invariance of a given space under topological transformation (homeomorphism Shakeel (2010)). Relations of topology and physics have been appeared in El Naschie (2000). The importance of topology has appeared in many fields of applications such as quantum physics, high energy physics, superstring theory (El-Naschie, 2001; 2003; 2006). Regarding the combination of rough set theory and topology, some research is given in the paper of Karim et al. (2001), Li (2004; 2010), Zhu (2007), Wu et al. (2008) and Ge (2010).

However, in the above literature, the topological space on covering-based rough sets and the corresponding topological properties on the topological covering-based rough space are not studied. This paper studies these problems. The basic notions in rough set theory are the lower and upper approximation operators. By using the lower and upper approximations of decision classes, knowledge hidden in information tables may be unraveled and expressed in the form of decision rules. In this paper,
we study a kind of covering-based rough sets from the topological point of view. The remainder of this paper is organized as follows: First, we present the fundamental concepts and properties of the Pawlak's rough set theory and covering-based rough sets. In addition, we describe some topological concepts. Second, we give the definition of open sets, closed sets and closure of sets on the covering lower approximation and covering upper approximation of a set. Some of their properties are studied. Then, we construct the topology on the covering-based rough sets and define the topological covering-based rough space. Finally, we study the properties of rough homeomorphisms. This research not only can form the theoretical basis for further applications of topology on covering-based rough sets but also lead to the development of the rough set theory and artificial intelligence.

PRELIMINARIES

In this section, we introduce the fundamental ideas behind rough sets and topology. Firstly, let's recall some concepts and properties of the Pawlak's rough sets.

Let \(U \) be a finite set and \(R \) be an equivalence relation on \(U \). \(R \) generates a partition \(U / R = Y_1, Y_2; \cdots, Y_m \) on \(U \) where \(Y_1, Y_2; \cdots, Y_m \) are the equivalence classes generated by the equivalence relation \(R \). In the rough set theory, these are also called elementary sets of \(R \). For any \(X \subseteq U \), we can describe \(X \) by the elementary sets of \(R \) and the two sets: \(R_X(X) = \bigcup Y \in U / R | Y \subseteq X \) \(R^*(X) = \bigcup Y \in U / R | Y \cap X \neq \emptyset \) which are called the lower and the upper approximation of \(X \), respectively.

In the following discussion, the universe of discourse \(U \) is considered to be infinite.

Now we will list some definitions and results about covering-based rough sets used in this paper, which belongs to Zhu (2002; 2009).

Let \(U \) be a domain of discourse, \(C \) a family of subsets of \(U \). If none subsets in \(C \) is empty, and \(\bigcup C = U \), \(C \) is called a covering of \(U \). It is clear that a partition is certainly a covering, so the concept of coverings is an extension of the concept of partitions.

Let \(U \) be a non-empty set, \(C \) a covering of \(U \). We call the ordered pair \((U, C)\) a covering approximation space. Assume that \(X \subseteq U \). If \(X \) is not always accurately described by the elements of the covering \(C \), that is, it is a covering-based rough set.

Then, we can use two exact sets of \(X \) on \(U \) to approximately describe it. The two exact sets are the covering lower approximation \(X^- \) and the covering upper approximation \(X^+ \) of \(X \), respectively. Which are defined as follows: \(X^- = \bigcup \{ K \subseteq X | K \in C \} \) and \(X^+ = \bigcup \{ K \cap X \neq \emptyset | K \in C \} \). The ordered pair \((X^-, X^+)\) is referred to as the covering-based rough set of \(X \) and labeled \(X = (X^-, X^+) \).

Let \(K = (U, C) \) be a covering approximation space. Throughout this paper, we use the following notations, \(A = A^-, A^+ \subseteq U \) and \(B = B^-, B^+ \subseteq U \).

1. The intersection operation of covering-based rough sets: \(A \cap B = (A^-, B^-, (A^+ \cap B^+) \).
2. The union operation of covering-based rough sets: \(A \cup B = (A^-, B^-, (A^+ \cup B^+) \).

Next, we give some concepts of topology. We refer to Engelking (1977), Kelly (1955), for details. A topological space is a pair \((U, \tau)\) consisting of a set \(U \) and family \(\tau \) of subset of \(U \) satisfying the following conditions:

1. \(U \in \tau \) and \(\emptyset \in \tau \). (2) \(\tau \) is closed under arbitrary union. (3) \(\tau \) is closed under finite intersection.

The pair \((U, \tau)\) is called a topological space, the elements of \(U \) are called points of the space, the subsets of \(U \) belonging to \(\tau \) are called open sets in the space, and the complement of the subsets of \(U \) belonging to \(\tau \) are called closed sets in the space; the family \(\tau \) of open subsets of \(U \) is also called a topology for \(U \).

Let \((X, \tau), (Y, \delta)\) be two topological spaces; a mapping \(f \) of \(X \) to \(Y \) is called continuous if \(f^{-1}(U) \in \tau \) for any \(U \in \delta \), that is, if the inverse image of any open subset of \(Y \) is open in \(X \).

A mapping \(f \) of \(X \) to \(Y \) is called open (closed) if for every open (closed) set of \(A \subseteq X \) the image \(f(A) \) is open (closed) in \(Y \).

A continuous mapping \(f \) of \(X \) to \(Y \) is called homeomorphism if \(f \) is a single and full mapping and
the inverse mapping f^{-1} is continuous.

Lemma 1.

For a single and full mapping f of a topological space X to a topological space Y the following conditions are equivalent:

1. The mapping f is a homeomorphism.
2. The mapping f is continuous and closed.
3. The mapping f is continuous and open. R. Engelking (1977)

TOPOLOGICAL COVERING-BASED ROUGH SPACE

Firstly, we definite open and closed sets in the covering approximation space.

Since X_* and X^* are exact sets, we can give the different topology τ_1 and τ_2 on X_* and X^*, respectively. Then obtain the corresponding topological spaces (X_*, τ_1) and (X^*, τ_2). Generally, when τ_1 and τ_2 are clearly given, (X_*, τ_1) and (X^*, τ_2) can be briefly labeled as X_* and X^*.

Definition 1

Let $K = (U, C)$ be a covering approximation space. Assume that $X = (X_*, X^*) \subseteq U$. Let A_1 and A_2 be the subsets corresponding to the topological space X_* and X^*, respectively. $a_1 \in A_1$ is called an inner point of A_1 inside X_* if a_1 has a neighborhood $U(a_1) \subseteq A_1$; correspondingly, $a_2 \in A_2$ is called an inner point of A_2 inside X^* if a_2 has a neighborhood $U(a_2) \subseteq A_2$. The set that consists of all inner points of A_1 inside X_* is called the interior of A_1 inside X_*; likewise, the set that consists of all inner points of A_2 inside X^* is called the interior of A_2 inside X^*. These sets are denoted by Int_1A_1 and Int_2A_2, respectively. A_1 is called an open set of X_* if $A_1 = \text{Int}_1A_1$; A_2 is called an open set of X^* if $A_2 = \text{Int}_2A_2$. At the same time, if A_1 and A_2 satisfy $A_1 \subseteq X_* \subseteq A_2 \subseteq X^*$, $A = A_1 \cup A_2$ is called an open set of X.

Theorem 1

Let $A = A_1 \cup A_2$ be a subset of $X = (X_*, X^*) \subseteq U$, and it satisfies $A_1 \subseteq X_* \subseteq A_2 \subseteq X^*$, A is an open set \Leftrightarrow it is an ordered pair that consists of the union of some neighborhoods.

Proof; By Definition 1 and general topological knowledge (R. Engelking (1977), J.L.Kelly (1955)), A_1 is an open set of $X_* \Leftrightarrow A_1 = \text{Int}_1A_1$. Then, for all $a_i \in A_1$, there is a neighborhood $a_i \in U(a_i) \subseteq A_1$. Since a_i is random, we have $a_i \in \bigcup_{a_i \in A_1} U(a_i)$. Thus, $A_1 = \bigcup_{a_i \in A_1} U(a_i)$. However, $\bigcup_{a_i \in A_1} U(a_i) \subseteq A_1$; then, $A_1 = \bigcup_{a_i \in A_1} U(a_i)$. This means that A_1 is the union of some neighborhoods in X_*. Similarly, A_2 is an open set of $X^* \Leftrightarrow A_2$ is the union of some neighborhoods in X^*.

By the condition $A_1 \subseteq X_* \subseteq A_2 \subseteq X^*$, $A = A_1 \cup A_2$ is an open set of $X = (X_*, X^*) \Leftrightarrow$ it is the ordered pair that consists of the union of some neighborhoods.

Theorem 2

Let $K = (U, C)$ be a covering approximation space. Assume that $X = (X_*, X^*) \subseteq U$. Let $\tau = (\tau_1, \tau_2)$ be a family of open sets that consists of all open sets of X. Then, τ satisfies the followings;

1. $X \in \tau$ and $\emptyset \in \tau$, where $\emptyset = (\emptyset, \emptyset)$ is an empty set.
2. If $O_1, O_2 \in \tau$, then $O_1 \cap O_2 \in \tau$.
3. If for any $\gamma \in \Gamma$, we have $O_\gamma \in \tau$. Then, $\bigcup_{\gamma \in \Gamma} O_\gamma \in \tau$

Proof

1. Based on the general topological knowledge (Engelking (1977); Kelly (1955)), there are
Definition 2
Let \(K = (U, C) \) be a covering approximation space. Assume that \(X = (X_+, X^-) \subseteq U \). Let \(A_1 \) and \(A_2 \) be the subsets corresponding to the topological space \(X_+ \) and \(X^- \), respectively. \(A_1 \) and \(A_2 \) are the closed sets of \(X_+ \) and \(X^- \), respectively, if the complementary sets \(X_+ \setminus A_1 \) and \(X^- \setminus A_2 \) of \(A_1 \) and \(A_2 \) are the open sets of \(X_+ \) and \(X^- \), respectively. At the same time, if \(A_1 \) and \(A_2 \) satisfy \(A_1 \subseteq X_\subseteq A_2 \subseteq X^- \), \(A = A_1 \cap A_2 \) is called the closed set of \(X \).

Theorem 3
Let \(K = (U, C) \) be a covering approximation space. Assume that \(X = (X_+, X^-) \subseteq U \). Let \(\mathcal{V} = (\mathcal{V}_1, \mathcal{V}_2) \) be a family of closed sets that consists of all closed sets of \(X \). Then, \(\mathcal{V} \) satisfies the following.

(1) \(X \in \mathcal{V} \) and \(\phi \in \mathcal{V} \), where \(\mathcal{\bar{V}} = (\emptyset, \emptyset) \) is an empty set.
(2) If \(F_1, F_2 \in \mathcal{V} \), then \(F_1 \cup F_2 \in \mathcal{V} \).
(3) If for any \(\mathcal{Y} \in \mathcal{V} \), we have \(F_\mathcal{Y} \in \mathcal{V} \). Then, \(\cap_{\mathcal{Y} \in \mathcal{V}} F_\mathcal{Y} \in \mathcal{V} \).

Proof
\(X = (X_+, X^-) \in \mathcal{V} \). Again, \((X_+ \setminus \emptyset, X^- \setminus \emptyset) = (X_+, X^-) \in \mathcal{V} \). Thus, \(\phi \in \mathcal{V} \).

\((2) \) Assume that \(F_1 = F_{1*}, F_2 \in \mathcal{V} \) and satisfy \(F_1 \subseteq X_\subseteq F_1 \subseteq X^- \) and \(F_2 \subseteq X_\subseteq F_2 \subseteq X^- \). Because \(X \setminus (F_1 \cup F_2) = X \setminus (F_1 \cap F_2) \), \(X \setminus F_1 \cup F_2 = X \setminus (F_1 \setminus F_2) \cap X \setminus F_2 \), and \(X \setminus F_1 \cup F_2 \) are all open sets. Then, \(X \setminus F_1 \cup F_2 \) and \(X \setminus (F_1 \cup F_2) \) are open sets by Theorem 2(2). Thus, by definition 2, \(F_1 \cup F_2 \) and \(F_1 \setminus F_2 \) are the closed sets of \(X_+ \) and \(X^- \), respectively. By the known assumption, we have \(F_1 \cup F_2 \subseteq X_\subseteq F_1 \cup F_2 \subseteq X^- \). From the union operation of covering-based rough sets again, we have \(F_1 \cup F_2 = (F_1 \cup F_2, F_1 \setminus F_2) \in \mathcal{V} \).

(3) Use the same method above, we can prove the intersection of any closed sets that are members of \(\mathcal{V} \) still belongs to \(\mathcal{V} \).

The rough inclusion and rough equality are defined as follows.

Definition 3

The rough inclusion of \(X = (X_+, X^-) \) and \(Y = (Y_+, Y^-) \) is defined as \(X \prec Y \iff X_\subseteq Y_+ \) and \(X^- \subseteq Y^- \). The rough equality is defined as \(X \approx Y \iff X_+ = Y_+ \) and \(X^- = Y^- \).

Based on Definition 3, the following property exists.

Proposition 1

(1) \(X \prec Y \iff X \prec Y \) and \(Y \prec X \).
(2) \(X \prec Y \) and \(X \approx Z \equiv Z \prec Y \).

Definition 4

Let \(K = (U, C) \) be a covering approximation space. Assume that \(X = (X_+, X^-) \subseteq U \). Let \(A_1 \) and \(A_2 \) be the subsets corresponding to the topological space \(X_+ \) and \(X^- \), respectively. If \(A_1 \) and \(A_2 \) satisfy:
\(A_1 \subseteq X_1 \subseteq A_2 \subseteq X^* \), \(\overline{A} = \overline{A_1}, \overline{A_2} \) is called the closure of \(A = A_1, A_2 \) in \(X \), where \(\overline{A_1}, \overline{A_2} \) are the smallest closed set containing \(A_1, A_2 \) in \(X \) and \(X^* \), respectively. Let \(A = A_1, A_2 \) be the smallest closed set of \(X \) and \(X^* \), respectively. Therefore, \(\overline{A} = \overline{A_1}, \overline{A_2} \) is the closed set of \(X \triangleq A \approx A \).

Theorem 4

Let \(K = (U, C) \) be a covering approximation space. Assume that \(X = (X_1, X^*) \subseteq U \). Let \(A = A_1, A_2 \) be a subset of \(X \) and satisfy \(\overline{A} \subseteq X_1 \subseteq A_2 \subseteq X^* \). \(A \) is the closed set of \(X \triangleq A \approx A \).

Proof

If \(A \) is a closed set, then \(\overline{A_1} \) and \(\overline{A_2} \) are the closed sets of \(X_1 \) and \(X^* \), respectively. Therefore, \(\overline{A_i} = A_i \) and \(\overline{A_i} = A_i \). So we have \(A \approx \overline{A} \).

On the contrary, \(A \approx \overline{A} \), then \(\overline{A_i} = A_i \) and \(\overline{A_i} = A_i \) in \(X_1 \) and \(X^* \), respectively. And by \(\overline{A_i} \subseteq X_1 \subseteq A_2 \subseteq X^* \) thus, \(A = A_1, A_2 \) is the closed set of \(X \).

Theorem 5

Let \(K = (U, C) \) be a covering approximation space. Assume that \(X = (X_1, X^*) \subseteq U \). Let \(A \) and \(B \) be the subsets of \(X \), the following properties exist.

1. \(\overline{\emptyset} = \emptyset \).
2. \(A \triangleq \overline{A} \triangleq X \).
3. \(\overline{A} \approx \overline{A} \).
4. \(\overline{A \cup B} \approx \overline{A} \cup \overline{B} \).

Proof

Properties (1) and (2) follow directly from the definition of closure, and property (3) from the fact that \(\overline{A} \) is a closed set.

Let \(A = (A_1, A_2) \subseteq X \) and \(B = B_1, B_2 \subseteq X \), where \(A_1 \subseteq X_1 \subseteq A_2 \subseteq X^* \) and \(B_1 \subseteq X_1 \subseteq B_2 \subseteq X^* \). By \(\overline{A} \subseteq \overline{B_1}, \overline{A_2} \subseteq \overline{B_2} \), and the definition of closure, we have \(\overline{A} \subseteq \overline{A_1 \cup B_1} \) and \(\overline{A_2} \subseteq \overline{A_2 \cup B_2} \).

Similarly, we have \(\overline{B_1} \subseteq \overline{A_1 \cup B_1} \) and \(\overline{B_2} \subseteq \overline{A_2 \cup B_2} \).

Therefore, we, get \(\overline{A_1 \cup B_1} \subseteq \overline{A_1 \cup B_1} \), \(\overline{A_2 \cup B_2} \subseteq \overline{A_2 \cup B_2} \).

Again, \(\overline{A \cup B} = \overline{A_1 \cup B_1, A_2 \cup B_2} \), so \(\overline{A \cup B} \triangleq \overline{A} \cup \overline{B} \). By (2), \(A \triangleq \overline{A} \) and \(B \triangleq \overline{B} \), so that \(\overline{A_1 \cup B_1} \subseteq \overline{A_1 \cup B_1} \).

Since the last set is closed, being the union of two closed sets, from the definition of closure it follows that \(\overline{A_1 \cup B_1} \subseteq \overline{A_1 \cup B_1} \).

Similarly, we have \(\overline{A_2 \cup B_2} \subseteq \overline{A_2 \cup B_2} \). Therefore, \(\overline{A \cup B} \triangleq \overline{A} \cup \overline{B} \).

Based on the above discussion, there is \(\overline{A \cup B} \triangleq \overline{A} \cup \overline{B} \). At last, we gave the definition of the topological space on the covering-based rough sets.

Definition 5

Assume that \(X \) is a covering-based rough set. Let \(\tau \) be a family of subset of \(X \) and its members satisfy the results in Theorem 1, i.e., \((1) \, X \in \tau \) and \(\emptyset \in \tau \), where \(\emptyset = (\emptyset, \emptyset) \) is an empty set.

(2) If \(O_1, O_2 \in \tau \), then \(O_1 \cap O_2 \in \tau \).

(3) If for any \(\gamma \in \Gamma \), we have \(O_\gamma \in \tau \). Then, \(\bigcup_{\gamma \in \Gamma} O_\gamma \in \tau \).

Then, \(\tau \) is called a topology on \(X \). The members of \(\tau \) are called the open sets of \(X \). The covering-based rough set \(X \) together with its topology \(\tau \) is called the topological covering-based rough space, labeled \((X, \tau) \).

Generally, when the topology \(\tau \) is clearly given, \((X, \tau) \) can be briefly labeled as \(X \).

ROUGH HOMEOMORPHISMS

Definition 6

Let \(X = (X_1, X^*) \) and \(Y = (Y_1, Y^*) \) be the two topological covering-based rough spaces. If \(f_1 : X \to Y \) is a continuous mapping and \(f_2 : X^* \to Y^* \) is also a continuous mapping, then \(f = f_1 \circ f_2 \) is called a rough continuous mapping from \(X \) to \(Y \) and is labeled as \(f : X \to Y \).
Definition 7

Let \(X = (X_*, X^*) \) and \(Y = (Y_*, Y^*) \) be two topological covering-based rough spaces. Assume that \(f_1 : X_* \to Y_* \) is a single and full mapping, and \(f_2 : X^* \to Y^* \) is also a single and full mapping. At the same time, \(f_1, f_2, f_1^{-1} \), and \(f_2^{-1} \) are continuous mappings. Then, \(f_1 \) is called a homeomorphism from \(X_* \to Y_* \) and \(f_2 \) is called a homeomorphism from \(X^* \to Y^* \). \(f_1 \) and \(f_2 \) are also called the lower rough homeomorphism and the upper rough homeomorphism from \(X \) to \(Y \), respectively. Here, \(f = f_1 f_2 \) is called a rough homeomorphism from \(X \) to \(Y \) and is labeled as \(f : X \equiv Y \) or \(Y \equiv X \). If there is such homeomorphism or rough topological equivalence and labeled as \(f : X \equiv Y \) or \(Y \equiv X \), then \(f_1 \) is an identity mapping \(1_x \), from \(X_* \to Y_* \), and \(f_2 \) is also an identity mapping \(1_x \), from \(X^* \to Y^* \), then \(f \) is called an identity mapping \((1_x, 1_x) \) from \(X \) to \(Y \), and we label it as \(1_x = (1_x, 1_x) \).

Definition 8

Let \(X = (X_*, X^*) \) and \(Y = (Y_*, Y^*) \) be two topological covering-based rough spaces. If the mapping \(f : X \to Y \) transforms every open set (closed set) of \(X \) to be the open set (closed set) of \(Y \), then \(f \) is called the rough open mapping (closed mapping).

Theorem 6

\(f \) is a rough homeomorphism \(\Leftrightarrow \) \(f \) is a single and full rough open (or closed) continuous mapping.

Proof

\(\Rightarrow \) Assume \(f = f_1 f_2 \) is a rough homeomorphism from \(X \) to \(Y \). Then \(f = f_1 f_2 \) is a single and full mapping and \(f_1 \) is a homeomorphism from the topological space \(X_* \) to the topological space \(Y_* \) and \(f_2 \) is a homeomorphism from the topological space \(X^* \) to the topological space \(Y^* \). By lemma 1, \(f_1 \) is a continuous and open (or closed) mapping and \(f_2 \) is a continuous and open (or closed) mapping. Thus, \(f = f_1 f_2 \) is a single and full rough open (or closed) continuous mapping.

\(\Leftarrow \) If \(f = f_1 f_2 \) is a single and full rough open (or closed) continuous mapping. Then \(f_1 \) is a single and full open (or closed) continuous mapping from the topological space \(X_* \) to the topological space \(Y_* \) and \(f_2 \) is a single and full open (or closed) continuous mapping from the topological space \(X^* \) to the topological space \(Y^* \). By lemma 1, \(f_1 \) is a homeomorphism from the topological space \(X_* \) to the topological space \(Y_* \) and \(f_2 \) is a homeomorphism from the topological space \(X^* \) to the topological space \(Y^* \). Then \(f = f_1 f_2 \) is a rough homeomorphism from \(X \) to \(Y \) by Definition 7.

Theorem 7

Let \(X = (X_*, X^*) \) and \(Y = (Y_*, Y^*) \) be two topological covering-based rough spaces. Assume that \(f : X \to Y \) and \(g : Y \to X \) are two rough continuous mappings, and there are \(gf = 1_x \) and \(fg = 1_y \), respectively. Then, \(f \) must be the rough homeomorphism.

Proof

Assume that \(f = f_1 f_2 \) and \(g = g_1 g_2 \). Because \(f : X \to Y \) and \(g : Y \to X \) are rough continuous mappings, then \(f_1 : X_* \to Y_* \), \(f_2 : X^* \to Y^* \), \(g_1 : Y_* \to X_* \), and \(g_2 : Y^* \to X^* \) are also the continuous mappings. Since \(gf = 1_x \) and \(fg = 1_y \), then \(g_1 f_1 = 1_x \), \(g_2 f_2 = 1_x \), \(f_1 g_1 = 1_y \), \(f_2 g_2 = 1_y \).
Because f_1 is a mapping, $\forall x_1, x_2 \in X$, and $x_1 \neq x_2$, $\exists y_1, y_2 \in Y$ such that $y_1 = f_1 x_1$ and $y_2 = f_1 x_2$.

For $y_1, y_2 \in Y$, since g_1 is also a mapping and $g_1 f_1 = 1_{x_1}$, then $\exists y_1, y_2 \in X$ such that $g_1 f_1 x_1 = x_1 \in X$, $g_1 f_1 x_2 = x_2 \in X$, i.e., $x_1 = g_1 y_1$ and $x_2 = g_1 y_2$.

Since $g_1 : Y \rightarrow X$ is a mapping again, if $y_1, y_2 \in Y$, then $g_1 y_1 = g_1 y_2$. Thus, $x_1 = x_2$, which is in contradiction with $x_1 \neq x_2$. Therefore, there must be $y_1 \neq y_2$ when $x_1 \neq x_2$. Therefore, f_1 is a single mapping. Similarly, f_2 is also a single mapping.

Since g_1 is a mapping, for $\forall y \in Y_1$, $\exists x \in X_1$, such that $x = g_1 y$. For $x \in X_1$, since f_1 is also a mapping and $f_1 g_1 = 1_Y$, then $\exists f_1 x \in Y_1$ such that $f_1 g_1 y = y \in Y_1$, i.e., $y = f_1 x$. It shows that for any $\forall y \in Y_1$, there is an element $x \in X_1$ so that it corresponds to y, and let $y = f_1 x$. Therefore, f_1 is a full mapping from $X_1 \rightarrow Y_1$. Similarly, f_2 is also a full mapping. Thus, we get $f = f_1 f_2$ is a single and full mapping. Now, we prove that the mapping f transforms every open set of X to be the open set of Y.

Let $A = (A_1, A_2) \subseteq X$, under the mapping f, there is a corresponding $B = B_1 B_2$ such that $B = f A$, i.e., $B_1 = f_1 A_1$ and $B_2 = f_2 A_2$. If A is an open set, then A_1 and A_2 are the open sets and satisfy $A_1 \subseteq X_1 \subseteq A_2 \subseteq X$. For $\forall x \in A_1$, $\exists y \in B_1$ such that $y = f_1 x$. Again, for $A_1 \subseteq X_1$, $x \in X_1$; also, $y \in Y$, and, therefore, $B_1 \subseteq Y$. Similarly, $B_2 \subseteq Y$. Also, $B_1 \subseteq Y_1$ and $B_2 \subseteq Y_2$ are also obtained. Then, there is $B = B_1 B_2$ is a subset of Y. On the other hand, since A_1 is an open set, for $\forall x \in A_1$, there is a neighborhood M_x of x such that $M_x \subseteq A_1$ and $\exists y \in B_1$ such that $y = f_1 x$. Let $V_y = f_1 M_x$, then $y \in V_y \subseteq B_1$. Therefore, y is an inner point of B_1. Since x is random, and f_1 is a single and full mapping, then y is any point of B_1; therefore, B_1 is an open set of Y. Similarly, B_2 is an open set of Y. By $B_1 \subseteq Y_1 \subseteq B_2 \subseteq Y$, again, $B = B_1 B_2$ is an open set of Y. Then f_1 and f_2 are open mappings.

Thus the mapping f transforms every open set of X to be the open set of Y, i.e., f is a rough homeomorphism.

Therefore, f is a single and full rough open continuous mapping. By Theorem 6, we get $f = f_1 f_2$ is a rough homeomorphism from X to Y.

CONCLUSION AND FUTURE WORK

In this work we studied the topological structures on covering-based rough sets and rough homeomorphism. It forms the theoretical basis for further applications of topology on covering-based rough sets. However, under topological transformation, some properties of covering-based rough sets and topological theory on it such as separation axioms and covering properties are not studied, this is the limitation of this paper and also one of our future work.

Application of rough set theory to real problems is an important and challenging issue for rough set research. We know that reduction of attributes can be applied in the process of compactification of space time dimensions (Naschie, 1992), we will give an algorithm for knowledge reduction using topological structures in our next work.

Furthermore, it seems a need and possibility to apply the covering-based rough set theory to the computational theory for linguistic dynamic systems, software watermarking and software obfuscation (Zhu, 2009).

Also if rough set theory and topology combine with other soft computing methods such as fuzzy sets (Bayram, 2010), it will solve many problems of high machine IQ, hybrid intelligent system and incomplete information system. Our work in this paper is a start in these directions and they need further study.

ACKNOWLEDGMENTS

This work described here is supported by the grants from the National Natural Science Foundation of China
(10971186, 61070241, and 11026108), the Natural Scientific Foundation of Shandong Province (ZR2010AM019, ZR2010FM035, ZR2011AQ015) and the Doctor's Foundation of Jinan University (XBS No.0846).

REFERENCES
