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In the applications of parallel robots, kinematic calibration is required to eliminate the errors resulting 
from the manufacturing and assembly. In this paper, a new method for calibrating a parallel robot is 
proposed. An error model for kinematic calibration is constructed using differential geometry method. 
All leg length information and pose error are obtained based on measurement results coordinate 
measuring machine. A nonlinear least squares procedure is employed to determine the kinematic 
parameters. The parameters of the measurement error in the leg sensors are considered during 
kinematic modeling and parameter identification program. Experimental results presented demonstrate 
that the root mean square pose error can be improved at 80% with the 48 identified parameters. 
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INTRODUCTION 
 
Parallel robots such as a Stewart platform (Stewart, 1965) 
have some advantages of high rigidity, high velocity, and 
high load-carrying capacity over serial robots. These 
robots have found a variety of application in flight and 
vehicle simulators, high precision machining centers, and 
so on. However, they have some disadvantages of 
relatively small workspace and difficult forward kinematics 
problems. 

It is well known that excellent pose performance of 
parallel robots may be achieved based on an accurate 
kinematic model. However, parameters of the model 
inevitably deviate from its normal values due to 
manufacturing and assembly error. A direct consequence 
is to reduce the accuracy of parallel robots, since their 
control strategy heavily relies on a precise description of 
the kinematic model. So there has always been a demand 
for parameter identification and kinematic calibration to 
improve the ability of parallel robots in order to reach 
consistently and accurately a specified pose. This process 
provides better estimate of the parameters of the 
kinematic model to be used for analysis and motion 
control of parallel robots. Although, it is possible to 
determine  the parameters in theirs kinematic model, the 
resulting model will still contain some inaccuracies arising 
from joint and link clearances, steady state errors in  joint 

positions, inaccurate knowledge of the kinematic 
parameters, and payload carried by parallel robots. One 
way to tackle this problem is to identify parameters in the 
kinematic model, and then consider them in kinematic 
error compensation, especially when it is impossible to 
use absolute end pose measurements for pose feedback. 
As a result, a considerable amount of research has been 
devoted to the kinematic parameter identification and 
calibration of parallel robots. For example, Zhuang et al. 
(1991) proposed a method to calibrate a 42 parameter 
model of a Stewart platform. Their idea was to acquire 
special measurement sets which allow decomposing 
linear sub-models based on Stewart platforms of the error 
model. Linear sub-models offer the advantage that 
identification of the kinematic parameters becomes 
straight forward, no initial guess is needed and the 
optimum is global. This method of holding one leg at 
constant legs was further improved by Daney (2003) who 
combined it with an idea of Khalil and Murareci (1997) to 
keep the direction of the leg fixed during data acquisition. 
A method that is currently widely accepted is the double 
ball bar system. With this system, three position data can 
be collected for each measurement and pose can be 
computed simultaneously using three-point method. 
Wampler et al. (1995) developed a slightly different type of 
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calibration based on implicit loops. By applying five 
additional passive sensors on one leg, the forward 
kinematics can be computed so that closed form loop 
equations can be formed for the remaining five legs, and 
the calibration algorithm uses this additional data to solve 
for the kinematic parameters. This is not different from 
having an independent measure of the manipulator pose. 
A method to use redundant sensors on passive joints to 
calibrate parallel manipulators was proposed by Zhuang 
and Liu (1996). Redundant sensor data is obtained from 
as few as three additional sensors. To solve the forward 
kinematics, the authors implement a numerical method 
that solves for all joint variables, both passive and active. 
This allows the formation of measurement residual for the 
passive measured joints, thus a costs function that is 
minimized. By imposing appropriate physical constraints 
on the passive joints, the kinematic parameters of parallel 
manipulators can be identified only with the measurement 
data obtained from the actuators. Khalil and Besnard 
(1999) reported that locking universal and/or spherical 
joints, with some locking mechanisms, could calibrate 
Stewart platform autonomously. The locking mechanisms 
must be very stiff in order to prevent the joint and the link 
from bending deformation. 

It is the goal of this paper to determine the kinematic 
parameters experimentally for a parallel robot used in 
spacecraft docking simulator. The kinematic parameters 
of this mechanism are considered during modeling and 
identification stages. A well-known parameters estimation 
technique is employed to determine the parameters. The 
measurement technique applied is the coordinate 
measurement machine with an accuracy of ±0.070 mm, 
and a coordinate repeatability of ±0.050 mm. The results 
presented in this paper differ from previously published 
results in the sense that they contain the parameters of 
the displacement sensor and are based on a highly 
accurate measurement system. With the identified 
parameters, it is founded that the Root Mean Square pose 
error improves by at least 80% when compared to the 
Root Mean Square based on the normal parameters 
provide by the constructor. 
 
 
KINEMATIC MODEL OF THE PARALLEL ROBOT 

 
Here describes the parallel robot and its kinematics model. The 
robot consists of two rigid bodies, the base and the mobile platform, 
connected by 6 legs. The leg linear actuator provides 6 degree of 
freedom for the platform pose relative to the base, corresponding to 
position P and rotation matrix R. A pose X=[P, R] is associated to 6 
length variations li measured by internal leg sensors, i=1, …, 6. 

Each leg is attached to the base by a hook joint and to the 
platform by a hook joint; so, 23 parameters are required to model 
each leg. But as shown in Masory (1997), the principal source of 
error in positioning is due to limited knowledge of the joint centers 
and to the fact that part of the length is not given by the sensors. We 
thus use a simpler model with attachment point’s ai in the mobile 
frame, bi in the reference frame, and offset lengths l0,i. This gives 7 
parameters per leg, therefore 42 overall, denoted by �. 

 
 
 
 

 
 
Figure 1. Schematic representation of the parallel robot. 

 
 
 
Inverse kinematics 
 
The inverse kinematics problem of the parallel robot deals with 
calculating the leg lengths when the pose is given and the 
kinematics parameters are known. In effect, it is a mapping from 
global pose to local leg transducer readings. The inverse kinematics 
of a parallel robot is simple, yielding a nonlinear closed form 
solution. 

The vector chain in Figure 1 can be expressed as: 
 

iii bPaRl −+=                                         (1) 
 
The length of leg i can then be determined by taking the magnitude 
of Equation 1: 
 

i i i il Ra P bλ = = + −                                  (2) 

 
And the leg length sensor reading can be obtained by: 
 

iii ls ,0−= λ                                              (3) 

 
 
Forward kinematics 
 
For the parallel robots, the forward kinematics is difficult to compute 
since it consists in solving (Equation 1) for P and R given li and �. 
Define the vector function to describe the difference between the 
estimated sensor reading ( is ) and the actual sensor reading ( iŝ ). 
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The Newton-Raphson algorithm can be stated as (Patel and 
Ehmann, 2000): 
 
Measure ŝ  and select an initial guess for the pose X 
Compute s  based on X0 
Form f 
 
If XTX<tolerance1, exit with X as the solution 
Compute the partial derivative matrix XfJ ∂∂=  such that 

jiji XfJ ∂∂=,  

 
Solve for the update �X from J�X=-f 
If �XT�X<tolerance2, exit with X as the solution 
update X by X=X+�X and go to step 2 
 
In steps one, an initial pose vector X must be guessed. This is 
usually taken as the last pose of the mobile platform. In step two, the 
estimated length can be computed with the inverse kinematics 
(Equation 2). Step three and four are straightforward, with f formed 
through (Equation 4) and tolerance1 being the allowed error in the 
pose calculation. The partial derivatives required in step five can be 
computed. Step six involves a 6 by 6 matrix inversion to calculate �X, 
and then in step seven, the norm of �X is tested to see if the update 
is significant. If the update is considered significant, then the 
algorithm repeats from step two with the update pose vector. 
 
 
Error model 
 
There is a method by Ropponen and Arai (1995) available to 
develop an error model of a parallel robot that provides the 
framework to include the complete errors of the geometrical features 
for specifying the pose error. By differentiating both sides of 
Equation 1, one can obtain: 
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Where [�x �y �z �� �� ��]T describes pose error of the parallel robot, 
ui is the unit vector of the ith leg, two attachment point errors 
described by vector �ai and �bi are introduced to the parallel robot. 
On the other hand, ��i is a length error in the leg. 
 
The computation of the pose errors in Equation 5 involves three 
sections: the first one is the inverse Jacobian matrix, J-1, the second 
one is the leg length errors, ��, and the third one is the positional 
errors of the attachment points, Js�s. Thus, Equation 1 can be 
rewritten as: 
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( )sJJp sδδλδ −= −�                                        (6) 
 
The complete errors of the geometrical features in Equation 6, which 
are identified as leg length and position errors of the joints, have to 
be identified in order to improve the pose accuracy of the parallel 
robot. It is well known that the initial setup length of the leg is 
specified by the designer. As a result, an error in assembly will 
produce a constant error, l0,i, in the leg lengths. On the other hand, 
each leg contains a sensor and a measuring error in the sensor 
produces an error in the leg length. This paper makes the 
assumptions that the value of �� is the error produced in both the 
assembly and the sensor. Thus, one can obtain: 
 

( ) iiiii bPRall −+=+ �

� τ,                                 (7) 

 
Due to the length measuring error, �ili, in the ith sensor, one assume 
that the ith leg length with error equal to l0,i +�ili. 
 
 
ESTIMATION OF KINEMATIC PARAMETERS 
 
Since the measurement system has a very high accuracy, it is 
assumed that the errors in the parallel robot pose are due to the 
inaccuracy geometrical parameters in the kinematic model 
described by Khalil and Besnard (1999). Nonlinear Least Squares is 
chosen to estimated the actual values of the model parameters. It is 
based on minimizing the error between the pose data measured and 
the pose data calculated from the kinematic model. The generalized 
relationship between the kinematic parameters and the pose of the 
parallel robot is given by the forward kinematics as: 
 

( ) ( )ψfBALfp =Γ= ,,,�                                    (8) 
 
Where p=[x y z � � �] T, L0= [l0, 1 l0, 2 … l0, 6] T, �= [�1 �2 �3 �4 �5 �6] T, A= 
[a1x a1y a1z … a6x a6y a6z] T, B= [b1x b1y b1z … b6x b6y b6z] T.  Note that 
the aim of calibration method is to calculate the actual values of the 
36 coordinates of point’s ai and bi, the 6 offsets of the legs and 6 
errors of the sensors. 
 
Based on the nonlinear kinematics model f(	) of the parallel robot 
expressed with Equation 8, the kinematic parameters are estimated 
by minimizing the summed square of the error vector associated 
with n number of measurement. 
 

( )[ ] ( )[ ]�
=

−−=
n

i
i

T
i fpfpE

�

ψψ                              (9)  

 
Where pi is the ith measured pose. This is basically a nonlinear least 
squares optimization problem that can be solved using either the 
interior-reflective Newton algorithm or Levenburg-Marquardt 
algorithm. 
 
In this study, Levenburg-Marquardt algorithm is implemented for the 
nonlinear least square estimation of the kinematic parameters. The 
solution is obtained by providing the analytical forms of the cost 
function and of the gradient matrix of the cost function with respect 
to the identification parameters. 
 
 
EXPERIMENTAL RESULTS AND DISCUSSION 
 
The important elements of the experimental setup 
depicted in Figure 2,  are  the  coordinate  measuring 
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Figure 2. Experimental setup. 

 
 
 
machine, tooling balls and the parallel robots. After the 
coordinate measuring machine has been calibrated to 
measure the parallel robot pose with respect to the 
reference frame, the parallel robot is commanded to 120 
different well-spaced poses within the robot workspace, 
which have been determined to cover the range of motion 
of all the legs. Note that at least 8 measurements are 
needed to estimate the 48 parameters. The greater 
number of measurement would contribute to the 
convergence of the algorithm and reduce the effect of 
measurement noise. A good initial guess helps a least 
square estimation algorithm to converge quickly without 
experiencing any numerical singularities. Therefore, the 
nominal values of the parameters are taken as the initial 
values for the parameters while implementing nonlinear 
least square algorithm. 

The estimated technique mentioned above has been 
implemented using a program prepared in MatLab. The 
developed program can perform the calibration procedure 
considering any combination of the parameters used in 
the kinematic model. The parameters identified from 
estimated technique with and without the sensor errors 
are given in Table 1. The RMS pose errors with the 
nominal parameters and with the 48, and the 42 estimated 
parameters determined separately from the estimated 
technique are provided in Tables 2 and 3, respectively. 
The pose errors of the parallel robot with the nominal 
parameters, the 42, the 48 estimated parameters are 
depicted in the first, second and the third columns of 
Figure 3, respectively. 

 
 
 
 
Table 1. Values of the nominal parameters and the estimated 
parameters (Unit: m). 
 

� Nominal 
values 

Without sensor 
errors 

With sensor 
errors 

a1x 0.1669 0.1752 0.1802 
a1y -0.5447 -0.5365 -0.5362 
a1z 0.1300 0.1330 0.1350 
b1x 1.8419 1.6639 1.8464 
b1y -0.7842 -0.7941 -0.7889 
b1z 0.9083 0.9328 0.9092 
l0,1 1.8625 1.7066 1.8525 
�1 1 - 1.0001 
a2x 0.1669 0.1736 0.1645 
a2y 0.1598 0.1513 0.1543 
a2z 0.5367 0.5319 0.5285 
b2x 1.8419 1.6331 1.8350 
b2y -0.3945 -0.4049 -0.3972 
b2z 1.1333 1.1375 1.1308 
l0,2 1.8625 1.6749 1.8594 
�2 1 - 0.9995 
a3x 0.1669 0.1675 0.1639 
a3y 0.3849 0.3803 0.3777 
a3z 0.4067 0.4127 0.4127 
b3x 1.8419 1.6278 1.8244 
b3y 1.1787 1.1933 1.1787 
b3z 0.2250 0.2346 0.2384 
l0,3 1.8625 1.6801 1.8515 
�3 1 - 1.0003 
a4x 0.1669 0.1801 0.1732 
a4y 0.3849 0.3864 0.3836 
a4z -0.4067 -0.3988 -0.4005 
b4x 1.8419 1.7071 1.8418 
b4y 1.1787 1.2272 1.1835 
b4z -0.2250 -0.2045 -0.2148 
l0,4 1.8625 1.7554 1.8625 
�4 1 - 0.9997 
a5x 0.1669 0.1518 0.1697 
a5y 0.1598 0.1619 0.1533 
a5z -0.5367 -0.5259 -0.5279 
b5x 1.8419 1.7108 1.8408 
b5y -0.3945 -0.4302 -0.3970 
b5z -1.1333 -1.1658 -1.1282 
l0,5 1.8625 1.7866 1.8606 
�5 1 - 0.9998 
a6x 0.1669 0.1526 0.1664 
a6y -0.5447 -0.5366 -0.5399 
a6z -0.1300 -0.1194 -0.1274 
b6x 1.8419 1.6732 1.8370 
b6y -0.7842 -0.7903 -0.7822 
b6z -0.9083 -0.9305 -0.9062 
l0,6 1.8625 1.7391 1.8576 
�6 1 - 1.0004 
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Table 2. RMS of pose error with 48 parameters (Unit: m and degree). 
 

Parameters RMSp �RMSp RMSo �RMSo 

Normal parameters 
0.4444 
1.5349 
2.2120 

4.1913 
0.1061 
0.2254 
0.2750 

0.6065 

     

Estimated parameters 
0.1718 
0.2226 
0.1399 

0.5343 
0.0159 
0.0498 
0.0504 

0.1161 

     

Improvement % 
61.34 
85.50 
93.68 

87.25 
85.01 
77.90 
81.67 

80.86 

 
 
 

Table 3. RMS of pose error with 42 parameters (Unit: m and degree). 
 

Parameters RMSp �RMSp RMSo �RMSo 

Normal parameters 
0.4444 
1.5349 
2.2120 

4.1913 
0.1061 
0.2254 
0.2750 

0.6065 

     

Estimated parameters 
0.2023 
0.2658 
0.1625 

0.6306 
0.0211 
0.0585 
0.0643 

0.1439 

     

Improvement % 
54.48 
82.68 
92.65 

84.95 
80.11 
74.05 
76.62 

76.27 

 
 
 

 
 
Figure 3. The errors in the 11 poses with the nominal, the 42 and the 48 identified parameters. 
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By calibration based on 42-parameter model, an 
accuracy improvement of a factor 6.6 for the parallel robot 
could be gained on the summation of RMS of position 
whereas by calibration based on 48-parameter model the 
predication of the position of the parallel robot improved 
by a factor of 7.8 for the summation of RMS. 

The presented identification procedure can be utilized 
for the class of six-branch parallel manipulators. The 
developed calibration program can be used for any 
manipulators of this class after proving routines that 
calculate poses of the branch ends expressed in the base 
reference frame and derivatives of the branch ends’ poses 
with respect to the calibration parameters, and also after 
providing leg displacement data for a sufficient set of 
mobile platform poses. 
 
 
Conclusions 
 
New calibration results based on coordinate 
measurement technique and a more complete kinematic 
model including sensor errors of a parallel robot. As a 
result the parallel robot’s pose accuracy is improved. The 
experiment has obtained the expectant aim and verified 
that, it is feasible to improve pose accuracy of the parallel 
robot by presenting the calibration method and 
identification program in practice. Based on the same set 
120 measurement poses the parameters of 42-parameter 
model and 48-parameter model were identified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
REFERENCES 
 
Stewart D (1965). A platform with six degree of freedom. Proc. Inst. 

Mech. Eng., 180(1):  371-386. 
Zhuang HQ, Roth Z (1991). A method for kinematic calibration of Stewart 

platforms. Proc. ASME Annu. Winter Meet., Atlanta, GA, 29: 43-48. 
Daney D (2003). Kinematic calibration of the Gough platform. Robotica. 

21(4): 677-690. 
Khalil W, Murareci D (1997). Autonomous calibration of parallel robots. 

Proc. 5th Symp. Robot Control, 2: 405-410. 
Wampler CW, Hollerbach JM, Arai T (1995). An implicit loop method for 

kinematic calibration and its application to closed-chain mechanisms. 
IEEE Trans. Robot. Automat., 11(5): 710-724. 

Zhuang HQ, Liu L (1996). Self-calibration of a class of parallel 
manipulators. Proc. IEEE Int. Conf.  Robot. Automat., 2: 994-999. 

Khalil W, Besnard S (1999). Self calibration of Stewart-Gough parallel 
robots without extra sensors. IEEE Trans. Robot. Automat., 15(6): 
1116-1121. 

Masory O, Wang J, Zhuang HQ (1997). Kinematic modeling and 
calibration of a Stewart platform. Adv. Robot., 11(5): 519-539. 

Patel AJ, Ehmann KF (2000). Calibration of a hexapod machine tool 
using a redundant leg. Int. J. Mach. Tools Manuf., 40: 489-512. 

Ropponen T, Arai T (1995). Accuracy analysis of a modified Stewart 
platform manipulator. Proc. IEEE Intern. Conf. Robotics Automat., 1: 
521-525. 

 
 
 


