African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - 0FAB98862240


Vol.16(1), pp. 22-31 , January 2017
DOI: 10.5897/AJB2016.15720
ISSN: 1684-5315



Full Length Research Paper

Molecular detection of disease resistance genes to powdery mildew (Blumeria graminis f. sp. tritici) in wheat (Triticum aestivum) cultivars



Vincent Mgoli Mwale*
  • Vincent Mgoli Mwale*
  • Lilongwe University of Agriculture and Natural Resources (LUANAR), Bunda College Campus, P.O. Box 219, Lilongwe, Malawi.
  • Google Scholar
Xiuli Tang
  • Xiuli Tang
  • 2State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
  • Google Scholar
Eric Chilembwe
  • Eric Chilembwe
  • Lilongwe University of Agriculture and Natural Resources (LUANAR), Bunda College Campus, P.O. Box 219, Lilongwe, Malawi.
  • Google Scholar







 Received: 10 October 2016  Accepted: 14 December 2016  Published: 04 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to the fungal disease using molecular markers linked to Pm genes. Results showed that 17 cultivars were detected with Pm2 gene, 24 cultivars were detected with Pm4b gene, two cultivars were detected with Pm6 gene while 24 wheat cultivars were detected with Pm8 gene. Multiple genes were also detected in the study. Cultivars Xinxuan2039, Lankao008 and Zhengmai366 were detected with possible multiple Pm2+Pm4b+Pm8 genes while Yumai368 was detected with possible multiple genes Pm2+Pm4b+Pm6. The results of this study provide a significant contribution to breeding for resistance to wheat powdery mildew disease since the identified cultivars detected with Pm genes will contribute to further studies on improving wheat resistance to the disease. Also, the continued resistance of cultivars with designated resistance genes demonstrates that the responsible Pm genes are still effective in overcoming powdery mildew infections.

Key words: Blumeria graminis f. sp. tritici, wheat powdery mildew, disease resistance, Pm genes, Triticum aestivum, molecular marker.

Alam MA, Mandal MSN, Wang C, Ji W (2013). Chromosomal location and SSR markers of a powdery mildew resistance gene in common wheat line N0308. Afr. J. Microbiol. Res. 7(6):477-482.

 

Alam MA, Xue F, Wang C, Ji W (2011). Powdery Mildew Resistance Genes in Wheat: Identification and Genetic Analysis. J. Mol. Biol. Res. 1(1):20-39.
Crossref

 

Asad MA, Bai B, Lan C, Yan J, Xia X, Zhang Y, He Z (2014). Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. Crop J. 2(5):308-314.
Crossref

 

Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010). Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor. Appl. Genet. 121:499-510.
Crossref

 

Bennett FGA (1984). Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol. 33(3):279-300.
Crossref

 

Briggle LW (1969). Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci. 9:70-72.
Crossref

 

Cai SB, Cheng SH, Wu JZ, Yan W (2005). Evaluation, improvement and utilization of introduced wheat reserve resource resistant to powdery mildew. Acta Tritical Crops 25:116-120.

 

Cao X, Luo Y, Zhou Y, Duan X, Cheng D (2013). Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot. 45:124-131.
Crossref

 

Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995). Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 91:1125-1129.
Crossref

 

Conner RL, Kuzyk AD, Su H (2003). Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J. Plant Sci. 83:725- 728.
Crossref

 

Costamilan LM (2005). Variability of the wheat powdery mildew pathogen Blumeria graminis f. sp. tritici in the 2003 crop season. Fitopatol. Bras. 30:420-422.
Crossref

 

Cowger C, Parks R, Marshall D (2009). Appearance of powdery mildew of wheat caused by Blumeria graminis f. sp. tritici on Pm17-bearing cultivars in North Carolina. Plant Dis. 93:1219.
Crossref

 

Everts KL, Leath S, Finney PL (2001). Impact of powdery mildew and leaf rust on milling and baking quality of soft red winter wheat. Plant Dis. 85:423-429.
Crossref

 

Gao H, Zhu F, Jiang Y, Wu J, Yan W, Zhang Q, Jacobi A, Cai S (2012). Genetic analysis and molecular mapping of a new powdery mildew resistant gene Pm46 in common wheat. Theor. Appl. Genet. 125(5):967-973.
Crossref

 

Graybosch RA (2001). Uneasy unions: quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 33:3-16.
Crossref

 

Hao Y, Chen Z, Wang Y, Bland D, Parks R, Cowger C, Johnson J (2012). Identification of Pm8 suppressor at the Pm3 locus in soft red winter wheat. Crop Sci. 52:2438-2445.
Crossref

 

Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown Guedira G, Johnson J (2015). Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor. Appl. Genet. 128:465-476.
Crossref

 

Hsam SLK, Zeller FJ (1997). Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar 'Amigo'. Plant Breed. 116:119-122.
Crossref

 

Huang XQ, Röder MS (2004). Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203-223.
Crossref

 

Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh MA, Keller B (2014). The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 79:904-913.
Crossref

 

Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008). Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385-390.
Crossref

 

Jorgensen JH, Jensen CI (1972). Genes for resistance to wheat powdery mildew in derivatives of Triticum timopheevii and Triticum carthlicum. Euphytica 21:121-128.
Crossref

 

Law C N, Wolfe M S (1966). Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can. J. Genet. Cytol. 8:462-470.
Crossref

 

Li B, Cao X, Chen L, Zhou Y, Duan X, Luo Y, Fitt BDL, Xu X, Song Y, Wang B, Cao S (2013). Application of geographic information systems to identify the oversummering regions of Blumeria graminis f. sp. tritici in China. Plant Dis. 97:1168-1174.
Crossref

 

Li N, Jia S, Wang X, Duan X, Zhou Y, Wang Z, Lu G (2012). The effect of wheat mixtures on the powdery mildew disease and some yield components. J. Integr. Agric. 11(4):611-620.
Crossref

 

Li N, Wen Z, Wang J, Fu B, Liu J, Xu H, Kong Z, Zhang L, Jia H, Ma Z (2014). Transfer and mapping of a gene conferring later-growth-stage powdery mildew resistance in a tetraploid wheat accession. Mol. Breed. 33:669-677.
Crossref

 

Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000). Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed. 119:21-24.
Crossref

 

Liu WC, Shao ZR (1994). Epidemiology, occurrence and analysis of wheat powdery mildew in recent years. Plant Prot. Technol. Ext. 6:17-20.

 

Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002). Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21-29.
Crossref

 

Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009). Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 118:1059-1064.
Crossref

 

Luo Y, Chen X, Xia L, Chen X, He Z, Ren Z (2005). Molecular Marker-Assisted selection of DH plants conferring genes resistant to powdery mildew in wheat (Triticum aestivum L). Acta Agron. Sin. 31(5):565-570.

 

Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995). Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152-156.
Crossref

 

Ma P, Xu H, Xu Y, Li L, Qie Y, Luo Q, Zhang X, Li X, Zhou Y, An D (2015). Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding line KM2939. Theor. Appl. Genet. 128:613-622.
Crossref

 

Mandal MDN, Fu Y, Zhang S, Ji W (2015). Proteomic Analysis of the Defense Response of Wheat to the Powdery Mildew Fungus, Blumeria graminis f. sp. tritici. Protein J. 33:513-524.
Crossref

 

McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2014). Catalogue of gene symbols for wheat: 2013–2014 supplement. Ann Wheat Newsl. 60:153-175.

 

McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2013). Catalogue of gene symbols for wheat. In. Ogihara Y (ed) Proceeding of the 12th international wheat genetics symposium, Yokohama, Japan, 8–13 Sept, 2013.

 

Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013). Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J. Appl. Genet. 54(3):259-263.
Crossref

 

Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001). An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed. 120:448-450.
Crossref

 

Mohler V, Jahoor A (1996). Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. Theor. Appl. Genet. 93:1078-1082.
Crossref

 

Parks R, Carbone I, Murphy J, Marshall D, Cowger C (2008). Virulence structure of the eastern US wheat powdery mildew population. Plant Dis. 92:1074-1082.
Crossref

 

Peng F, Song N, Shen H, Wu H, Dong H, Zhang J, Li Y, Peng H, Ni Z, Liu Z, Yang T, Li B, Xie C, Sun Q (2014). Molecular mapping of a recessive powdery mildew resistance gene in spelt wheat cultivar Hubel. Mol. Breed. 34:491-500.
Crossref

 

Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown Guedira G, Murphy JP (2015). Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor. Appl. Genet. 128:303-312.
Crossref

 

Piarulli L, Gadaletaa A, Manginia G, Signorilea MA, Pasquinib M, Blancoa A, Simeone R (2012). Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci. 196:101-106.
Crossref

 

Purnhauser L, Bo’na L, La’ng L (2011). Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica 179:287-295.
Crossref

 

Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang X (2011). Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor. Appl. Genet. 123:207-218.
Crossref

 

Quijano CD, Brunner S, Keller B, Gruissem W, Sautter C (2015). The environment exerts a greater influence than the transgene on the transcriptome of field-grown wheat expressing the Pm3b allele Transgenic Res. 24:87-97.
Crossref

 

Ryabchenko AS, Serezhkina GV, Mishina GN, Andreev LN (2003). Morphological variability of wheat powdery mildew in the context of its parasitic adaptation to wheat-Aegilops lines with different resistance. Biol. Bull. Acad. Sci. 30:255-261.
Crossref

 

Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X, Bai GH, Zhang HY, Tan FQ, Ren ZL, Luo PG (2015). Identification and genetic mapping of the putative Thinopyrum intermedium derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor. Appl. Genet. 128:517-528.
Crossref

 

Shi YQ, Wang BT, Qiang L, Wu XY, Fang W, Heng L, Tian YE, Liu QR (2009). Analysis on the virulent genes of Erysiphe graminis f.sp. tritici and the resistance genes of wheat commercial cultivars in Shaanxi Province. J. Triticeae Crops 29:706-711.

 

Song W, Xie C, Du J, Xie H, Liu Q, Ni Z, Yang T, Sun Q, Liu Z (2009). A ''one-marker-for-two-genes'' approach for efficient molecular discrimination of Pm12 and Pm21 conferring resistance to powdery mildew in wheat. Mol. Breed. 23:357-363.
Crossref

 

Tang X, Shi D, Xu J, Li Y, Li W, Ren Z, Fu T (2014). Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica 197:201-210.
Crossref

 

Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C (2005). Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis. 89:457-463.
Crossref

 

Wang Z, Li H, Zhang D, Guo L, Chen J, Chen Y, Wu Q, Xie J, Zhang Y, Sun Q, Dvorak J, Luo M, Liu Z (2015). Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor. Appl. Genet. 128:365-373.
Crossref

 

Xiao M, Song F, Jiao J, Wang X, Xu H, Li H (2013). Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor. Appl. Genet. 126(5):1397-1403.
Crossref

 

Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, Röder MS, Fahoum A, Fahima T (2012). Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol. Breed. 29:399-412.
Crossref

 

Xue F, Zhai W, Duan X, Zhou Y, Ji W (2009). Microsatellite mapping of a powdery mildew resistance gene in wheat landrace Xiaobaidong. Acta Agron. Sin. 35(10):1806-1811.
Crossref

 

Yao G, Zhang J, Yang L, Xu H, Jiang Y, Xiong L, Zhang C, Zhang Z, Ma Z, Sorrells ME (2007). Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet. 114:351-358.
Crossref

 

Yu S, Long H, Deng G, Pan Z, Liang J, Yu M (2015). Localization of the powdery mildew resistance gene Pm07J126 in wheat (Triticum aestivum L.). Euphytica 205(3):691-698.
Crossref

 

Zeng F, Yang L, Gong S, Shi W, Zhang X, Wang H, Xiang L, Xue M, Yu D (2014). Virulence and Diversity of Blumeria graminis f. sp. tritici Populations in China. J. Integr. Agric. 13(11):2424-2437.
Crossref

 

Zhang K, Zhao L, Hai Y, Chen G, Tian J (2008). QTL mapping for adult-plant resistance to powdery mildew, lodging resistance, and internode length below spike in wheat. Acta Agron. Sin. 34(8):1350-1357.
Crossref

 

Zhao Z, Sun H, Song W, Lu M, Huang J, Wu L, Wang X, Li H (2013). Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor. Appl. Genet. 126:3081-3089.
Crossref

 

Zheng Y (2010). Detection of latent infection of wheat leaves caused by Blumeria graminis f. sp. tritici using Real-time PCR. MSc thesis (in Chinese), Chinese Academy of Agricultural Sciences, pp. 9-34.

 


APA Mwale, V. M., Tang, X., & Chilembwe, E. (2017). Molecular detection of disease resistance genes to powdery mildew (Blumeria graminis f. sp. tritici) in wheat (Triticum aestivum) cultivars. African Journal of Biotechnology , 16(1), 22-31.
Chicago Vincent Mgoli Mwale, Xiuli Tang and Eric Chilembwe. "Molecular detection of disease resistance genes to powdery mildew (Blumeria graminis f. sp. tritici) in wheat (Triticum aestivum) cultivars." African Journal of Biotechnology 16, no. 1 (2017): 22-31.
MLA Vincent Mgoli Mwale, Xiuli Tang and Eric Chilembwe. "Molecular detection of disease resistance genes to powdery mildew (Blumeria graminis f. sp. tritici) in wheat (Triticum aestivum) cultivars." African Journal of Biotechnology 16.1 (2017): 22-31.
   
DOI 10.5897/AJB2016.15720
URL http://academicjournals.org/journal/AJB/article-abstract/0FAB98862240

Subscription Form