African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - 197669244429


Vol.13(18), pp. 1835-1844 , April 2014
DOI: 10.5897/AJB2014.13746
ISSN: 1684-5315



Review

Microbial agents against Helicoverpa armigera: Where are we and where do we need to go?



Rajendran Vijayabharathi
  • Rajendran Vijayabharathi
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar
Bhimineni Ratna Kumari
  • Bhimineni Ratna Kumari
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar
Subramaniam Gopalakrishnan*
  • Subramaniam Gopalakrishnan*
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar







 Received: 20 February 2014  Accepted: 29 April 2014  Published: 30 April 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Plants are prone to various biotic stresses in nature by bacteria, viruses, fungi, parasites, harmful insects and weeds. The biggest percentage loss (70%) in plants is attributed to insects. Lepidoptera is one such diversified phytophagous insect group, which include Helicoverpa armigera, a key pest of many food crops including chickpea, pigeonpea, pea, lentil, chillies, sunflower, tomato, tobacco and cotton. Controlling this insect has been a big task for farmers leading to the manufacture of a plethora of pesticides. However, over reliance on chemical pesticides has resulted in problems including safety risks, environmental contamination, outbreaks of secondary pests, insecticide resistance and decrease in biodiversity. Hence, there is an urgent need for the development of eco-friendly methods such as entomopathogens, antagonist or competitor populations of a third organism and botanicals to suppress H. armigera. Also, many compounds from microorganisms have been found to be effective in crop production, and these have a role in controlling H. armigera. The actinomycetes play an astounding role in controlling the key plant pathogens. They are the representative genera of higher microbial mass in the soil. Numerous studies have shown that these productive actino-bacteria can generate an impressive array of secondary metabolites such as antibiotics, antitumor agents, insecticides etc. This review emphasizes the mechanism behind resistance to insecticides along with actinomycetes and its potential as a biocontrol agent against H. armigera.

 

Key words: Helicoverpa armigera, actinomycetes, biocontrol, metabolites.

Alizadeh A, Amin Samih M, Khezri M, Saberi Riseh R (2007). Compatibility of Beauveria bassiana (Bals.) Vuill. with several pesticides. Int. J. Agri. Biol. 9:31-34.
 
Ambethgar V (2009). Potential of entomopathogenic fungi in insecticide resistance management (IRM): A review. J. Biopesticides 2:177-193.
 
Aquinoa PV, Pe-aa SS, Blancob CA (2010). Activity of oil-formulated conidia of the fungal entomopathogens Nomuraea rileyi and Isaria tenuipes against lepidopterous larvae. J. Invert. Pathol. 103(3):145-149.
Crossref
 
Armes NJ, Jadhav DR, De Souza KR (1996). A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull. Entomol. Res. 86:499-514.
Crossref
 
Baltz RH (2005). Antibiotic discovery from actinomycetes: Will a renaissance follow the decline and fall? SIM News 55:186-196.
 
Baskar K, Ignacimuthu S (2012). Bioefficacy of violacein against Asian armyworm Spodopteralitura Fab. (Lepidoptera: Noctuidae). J. Saudi. Soc. Agri. Sci. 11:73-77.
 
Baxter SW, Badenes-Pérez FR, Morrison A, Vogel H, Crickmore N, Kain W, Wang P, Heckel DG, Jiggins CD (2011). Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 189:675-679.
Crossref
 
Behal V (2000). Bioactive products from Streptomyces. Adv. Appl. Microbiol. 47:113-157.
Crossref
 
Berdy J (2005). Bioactive microbial metabolites. J Antibiot. 58:1-26.
Crossref
 
Black BC, Brennan LA, Dierks PM, Gard IE (1997). Commercialization of baculoviral insecticides. In: The baculoviruses. Ed. by Miller LK, pp. 341-387. Plenum Press, New York and London.
Crossref
 
Brooks E, Hines E (1999). Viral biopesticides for Heliothine control-fact of fiction? Today's Life Sci. 11:38-45.
 
Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley E, Oiwa R, Omura S (1979). Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents Chemother. 15:361-367.
Crossref
 
Carlini CR, Grossi-de-Sa MF (2002). Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515-1539.
Crossref
 
Chamberlin ME (2004). Control of oxidative phosphorylation during insect metamorphosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:314-321.
Crossref
 
Chamberlin ME (2006). Changes in mitochondrial electron transport chain activity during insect metamorphosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:1016-1022.
Crossref
 
Chen XW, Sun XL, Li M, O'Reilly DR, Hu ZH, Vlak JM (2000). Genetic engineering of Heliothis Armigera single-nucleocapsid nucleopolyhedrovirus as an improved biopesticides. J. Invertebr. Pathol. 76:140-146.
Crossref
 
Chilcutt CF, Tabashnik BE (2004). Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proc. Natl. Acad. Sci. 101:7526-7529.
Crossref
 
Christie M (2010). Private property pesticide by-laws in Canada. 
 
Copping LG, Duke SO (2007). Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 63:524-554.
Crossref
 
Davis JM, Moore D, Prior C (1996). Screening of Metarhizium and Beauveria spp. conidia with exposure to simulated sunlight and range of temperature. Mycol. Res. 100:31-38.
Crossref
 
Deepika TL, Kannabiran K, Gopiesh Khanna V, Rajakumar G, Jayaseelan C, Santhoshkumar T, Abdul Rahuman A (2011). Isolation and characterisation of acaricidal and larvicidal novel compound (2S,5R,6R)-2-hydroxy-3,5,6-trimethyloctan-4-one from Streptomyces sp. against blood-sucking parasites. Parasitol. Res.
Crossref
 
Demain AL (1992) Microbial secondary metabolism. A new theoretical frontier for academia, a new opportunity for industry. In: Secondary metabolites: Their function and evolution. Ed. by Chadwick DJ and Whelan J, pp. 3-23. John Wiley and Sons, Inc, New York, USA.
Pubmed
 
Demain AL (1995). Why do microorganisms produce antimicrobials? In: 50 Years of antimicrobials. Ed by Hunter PA, Darby GK and Russell NJ, pp. 205-222. Society for General Microbiology, Cambridge.
 
Deshpande MV (1999). Mycopesticide production by fermentation: Potential and challenges. Crit. Rev. Microbiol. 25:229-243.
Crossref
 
El-Bendary MA, Rifaat HM, Keera AA (2010). Larvicidal activity of extracellular secondary metabolites of Streptomyces microflavus against Culex pipiens. Can. J. Pure. App. Sci. 4:1021-1026.
 
EL-Latif AAO, Subrahmanyam B (2010). Pyrethroid resistance and esterase activity in three strains of the cotton bollworm, Helicoverpa armigera (Hübner). Pestic. Biochem. Physiol. 96:155-159.
Crossref
 
Ellison CA, Tian Y, Knaak JB, Kostyniak PJ, Olson JR (2011). Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon. Dug. Metab. Disopos. DOI:10.1124/dmd.111.042572.
Crossref
 

EPPO (2006). European Plant Protection Organization. Distribution maps of quarantine pests. Helicoverpa armigera. 

View

 
Federici BA (2005). Insecticidal bacteria: An overwhelming success for invertebrate pathology. J. Invert. Pathol. 89:30-38.
Crossref
 
Fuentes JL, Karumbaiah L, Jakka SRK, Ning C, Liu C, Wu K, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang MJ (2011). Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis. PLoS One 6: e17606.
Crossref
 
Goodfellow M, Williams E (1986). New strategies for the selective isolation of industrially important bacteria. Biotechnol. Genet. Eng. Rev. 4:213-262.
Crossref
 

Gopalakrishnan S, Ranga Rao GV, Humayun P, Rao VR, Alekhya G, Jacob S, Deepthi K, Vidya MS, Srinivas V, Mamatha L, Rupela O (2011). Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr. J. Biotech. 10:16667–16673.

View

 
Haq SK, Atif SM, Khan RH (2004). Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Arch. Biochem. Biophys. 431:145-159.
Crossref
 
Hegde R, Lingappa S, Patil RK, Rachappa V, Ramegowda GK (2004). Ecological manipulation in rain fed cotton ecosystem to enhance the efficacy of Nomuraearileyi (Farlow) Samson. Proc. Int. Symp. Strategies Sustain Cotton Prod. Global Vision 3:230-232.
 
Heisey RM, Huang J, Mishra SK, Keller JE, Miller JR, Putnam AR, D'Silva TDJ (1988). Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36:1283-1286.
Crossref
 
Huang J, Hu R, Pray C, Qiao F, Rozelle S (2003). Biotechnology as an alternative to chemical pesticides: A case study of Bt cotton in China. Agric. Econ. 29:55-67.
Crossref
 
Ikura K, Minami K, Otomo C, Hashimoto H, Natsuka S, Oda K, Nakanishi K (2000). High molecular weight transglutaminase inhibitor produced by a microorganism (Streptomyces lavendulae Y-200). Biosci. Biotechnol. 64:116-124.
Crossref
 
Inceoglu AB, Kamita SG, Hinton AC, Huang Q, Seversou TF, Kang K, Hammock BD (2001). Recombinant baculoviruses for insect control. Pest Manage. Sci. 57:981-987.
Crossref
 
Jiang L, Ma CS (2000). Progress of researches on biopesticides. Pesticides 16:73-77.
 
Jo LL, Ensio OJ, Carol MD, Carol MD, Rito JD, Ann BN, Gail MP (2003). Streptomyces galbus strain with insecticidal activity and method of using as an insecticide. European patent EP1272611.
 
Johnson DA, August PR, Shackleton C, Liu H, Sherman DH (1997). Microbial resistance to mitomycins involves a redox relay mechanism. J. Am. Chem. Soc. 199:2576-2677.
Crossref
 
Kale SN, Men UB (2008). Efficacy of microbial insecticides and their combinations against Helicoverpa armigera (Hübner) on chickpea. J. Biol. Control 22:205-208.
 
Karthik L, Gaurav K, BhaskaraRao KV, Rajakumar G, Abdul Rahuman A (2011). Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol. Res. 108:1447-1455.
Crossref
 
Karthik L, Gaurav K, BhaskaraRao KV, Rajakumar G, Rahuman AA (2011). Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol Res. 108:1447-1455.
Crossref
 
King EG, Coleman RJ (1989). Potential for biological control of Heliothis species. Ann. Rev. Entomol. 34:53-75.
Crossref
 
Kirst HA (2010). The spinosyn family of insecticides: realizing the potential of natural products research. J. Antibiotics 63:101-111.
Crossref
 
Lechevalier MP, Stern AE, Lechevalier HA (1981). Phospholipids in the taxonomy of actinomycetes. Zentbl. Bakteriol. Hyg. Abt. 11:111-116.
 
Lehr PS (2010). Biopesticides: The global market. Report No: CHM029C, BCC Research, Wellesley, Massachusetts.
 
Lewer P, Chapin EL, Graupner PR, Gilbert JR, Peacock C (2003). Tartrolone C: A novel insecticidal macrodiolide produced by Streptomyces sp. CP1130. J. Nat. Prod. 66:143-145.
Crossref
 
Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, Edwards PMR, Graupne PR (2009). Discovery of the butenyl-spinosyn insecticides: Novel macrolides from the new bacterial strain Saccharopolysporapogona. Bioorg. Med. Chem. 17:4185-4196.
Crossref
 
Liu H, Qin S, Wang Y, Li W, Zhang J (2008). Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J. Microbiol. Biotechnol. 24:2243-2248.
Crossref
 
Llewellyn DJ, Mares CL, Fitt GP (2007). Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein Vip3A. Agric. Forest Entomol. 9:93-101.
Crossref
 
McCarthy AJ, Williams ST (1992). Actinomycetes as agents of biodegradation in the environment - A review. Gene 115:189-192.
Crossref
 
Meadows MP (1993). Bacillus thuringiensis in the environment - Ecology and risk assessment. In: Bacillus thuringiensis: An environmental biopesticide; Theory and practice. Ed. by Entwistle PF, Cory JS, Bailey MJ, Higgs S. pp. 193-220. Chichester, John Wiley, USA.
 
Mettenmeyer A (2002). Viral insecticides hold promise for control. Pest. control 12:50-51.
 
Moscardi F (1999). Assessment of the application of baculoviruses for control of lepidoptera. Annu. Rev. Entomol. 44:257-289.
Crossref
 
Nahar P, Ghormade V, Deshpande MV (2004). The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J. Invert. Pathol. 85:80-88.
Crossref
O'callaghan M, Glare TR, Burgess EPJ, Malone LA (2005). Effects of plants genetically modified for insect resistance on nontarget organisms. Annu. Rev. Entomol. 50:271-292.
Crossref
 
Olivera RC, Neves PMOJ (2004). Biological control compatibility of Beauveria bassiana with acaricides. Neotropical. Entomol. 33:353-358.
 
Pandey A, Azmi W, Singh J, Banerjee UC (1999). Types of fermentation and factors affecting it, in Biotechnology Food Fermentation ed. Joshi VK and Pandey A, pp. 383-426. Eductional publisher, New Delhi, India.
 
Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011). Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedesaegypti and Anopheles stephensi. Parasitol. Res. 109:1179-1187.
Crossref
 
Patil RK (2001). Ecofriendly approaches for the management of Spodoptera litura (Fabricius) in groundnut. Ph.D. Thesis, University of Agricultural Sciences, Dharwad, India.  pp. 157.
 
Perlak F, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001). Development and commercial use of Bollgard[SUP®] cotton in the USA - early promises versus today's reality. Plant J. 27:489-502.
Crossref
 
Peumans WJ, Barre A, Hao Q, Rouge P and Van Damme EJM (2000). Higher plants developed structurally different motifs to recognize foreign glycans. Trends Glycosci. Glycotechnol. 12:83-101.
Crossref
 
Pilcher CD, Rice ME, Higgins RA, Steffey KL, Hellmich RL, Witkowski J, Calvin D, Ostlie KR, Gray M (2002). Biotechnology and the European corn borer: Measuring historical farmer perceptions and adoption of transgenic Bt corn as a pest management strategy. J. Econ. Entomol. 95:878-892.
Crossref
 
Pimental D (2009). Pesticides and pest control. In: Integrated Pest Management: Innovation-Development Process. Ed. by Peshin R, Dhawan AK, pp. 83-88. Springer Publications, Dordrecht, The Netherlands.
Crossref
 
Putter I, Mac Connell JG, Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981). Avermectins: Novel insecticides, acaricides and nematicides from a soil microorganism. Cell Mol. Life Sci. 37: 963-964.
Crossref
 
Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B (2009). Carbofuran-induced toxicity in rats: Protective role of vitamin C. Exp. Toxicol. Pathol. 61:531-535.
Crossref
 
Ramegowda GK (2005). Epizootiology and utilization of Nomuraerileyi (Farlow) Samson in pest suppression. Ph.D. Thesis, pp. 113. University of Agricultural Sciences, Dharwad, India.
 
Reed W, Pawar CS (1982). Heliothis: A global problem, In: Proceedings, International workshop on Heliothis management, ed. by Reed W and Kumble V. pp. 9-14. ICRISAT, India.
 
 
Revathi N, Ravikumar G, Kalaiselvi M, Gomathi D, Uma C (2011). Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. Plant. Pathol. Microbiol. 2(4).
 
Ruanpanun P, Laatsch H, Tangchitsomkid N, Lumyong S (2011). Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27:1373-1380.
Crossref
 
Salgado VL, Sparks TC (2005). The spinosyns: chemistry, biochemistry, mode of action, and resistance. In: Comprehensive Molecular Insect Science. Ed. by Gilbert LJ, Iatrou K, Gill SS. pp. 137-173, Elsevier, Oxford, UK.
Crossref
 
Saurav K, Rajakumar G, Kannabiran K, Abdul Rahuman A, Velayutham K, Elango G, Kamaraj C, AbduzZahir A (2011). Larvicidal activity of isolated compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one from marine Streptomyces VITSVK5 sp. against Rhipicephalus (Boophilus) microplus, Anopheles stephensi, and Culex tritaeniorhynchus. Parasitol. Res. DOI 10.1007/s00436-011-2682-z.
Crossref
 
Schrempf H (2001). Recognition and degradation of chitin by streptomycetes. Antonie Leeuwenhoek 79:285-289.
Crossref
 
Scott JG (1991). Insecticide resistance in insects. In: Handbook of Pest Management in Agriculture. Ed. by Pimentel D. pp. 663. CRC Press, Boca Raton.
 
 
Shekharappa (2009). Biological control of earhead caterpillar, Helicoverpea armigera Hubner in sorghum. J. Plant Protection Sci. 1:69-70.
 
Srinivasan A, Giri A, Gupta V (2006). Structural and functional diversities in lepidopteran serine proteases. Cell Mol. Biol. Lett. 11: 132-154.
Crossref
 
Stach JE, Bull AT (2005). Estimating and comparing the diversity of marine actinobacteria. Antonie Leeuwenhoek 87:3-9.
Crossref
 
Stafsnes MH, Dybwad M, Brunsvik A, Bruheim P (2012). Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection. Antonie Leeuwenhoek. 103:603-615.
Crossref
 
Starnes RL, Liu CL, Marrone PG (1993). History, use, and future of microbial insecticides. Am. Entomologist. 39: 83-91.
 
Sun XL, Sun XC, Van der Werf W, Vlak JM, Hu ZH (2004b). Field inactivation of wild-type and genetically modified Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus in cotton. Biocontr. Sci. Technol. 14:185-192.
Crossref
 
Sun XL, Wang HL, Sun XC, Chen XW, Peng CM, Pan DM, Jehle JA, Van der Werf W, Vlak JM, Hu ZH (2004a). Biological activity and filed efficacy of a genetically modified Helicoverpa armigera SNPV expressing an insect-selective toxin from a chimeric promoter. Biol. Control 29:124-137.
Crossref
 
Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z (2002). Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiol. 148:361-371.
 
Suresh Kumar, Amaresh Chandra, Pandey KC (2008). Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. J. Environ. Biol. 29:641-653.
Pubmed
 
Takatsu T, Horiuchi N, Ishikawa M, Wanibuchi K, Moriguchi T, Takahashi S (2003). 1100-50, a novel nematocide from Streptomyces lavendulae ASNK 64297. J. Antibiotics 56:306-309.
Crossref
 
Thompson GD, Dutton R, Sparks TC (2000). Spinosad - A case study: an example from a natural products discovery programme. Pest Manag. Sci. 56:696-702.
Crossref
 
Thompson GD, Sparks TC (2002). Spinosad: A green natural product for insect control. In: Advancing sustainability through green chemistry and engineering, ACS Symposium Series 823. Ed. by Lankey RL, Anastas PT, pp. 61-73. American Chemical Society, Washington DC.
 
Tiewsiri K, Wang P (2011). Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc. Natl. Acad. Sci. 108: 14037-14042.
Crossref
 
Uchida R, Imasato R, Yamaguchi Y, Masuma R, Shiomi K, Tomoda H, Omura S (2005). New insecticidal antibiotics, hydroxyfungerins A and B, produced by Metarhizium sp. FKI-1079. J. Antibiot. 58:4-9.
 
Valanarasu M, Kannan P, Ezhilvendan S, Ganesan G, Ignacimuthu S, Agastian P (2010). Antifungal and antifeedant activities of extracellular product of Streptomyces spp. ERI-04 isolated from Western Ghats of Tamil Nadu. J. Mycol. Med. 20:290-297.
Crossref
 
Van Reomurnd HJW, Van Lenteren JC, Rabbinge R (1997). Biological control of greenhouse whitefly with the parasitoid Encacarsia formosa on tomato: an individual-based simulation approach. Biol. Control 9:25-27.
Crossref
 

Vijayabharathi R, Kumari BR, Satya A, Srinivas V, Rathore A, Sharma HC, Gopalakrishnan S (2014). Biological activity of entomo-patho-genic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Can. J. Plant Sci. 

Crossref

 
Vijayakumar R, Murugesan S, Cholarajan A, Sakthi V (2010). Larvicidal potentiality of marine actinomycetes isolated from Muthupet Mangrove, Tamilnadu, India. Int. J. Microbiol. Res. 1(3):179-183.
 
Wang XY, Zhang J, Liu CX, Gong DL, Zhang H, Wang JD, Yan YJ, Xiang WS (2011a) . A novel macrocyclic lactone with insecticidal bioactivity from Streptomyces microflavus neau3. Bioorg. Medicinal Chem. Lett. 21:5145-5148.
Crossref
 
Wang XY, Zhang J, Wang JD, Huang SX, Chen YH, Liu CX, Xiang WS (2011b). Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069. Chem. Biodivers. 8:2117-2125.
Crossref
 

WHO (2005). World Health Organization report on infectious diseases removing the obstacles to healthy development,

View

 
Wilkins K (1996). Volatile metabolites from actinomycetes. Chemosphere 32:1427-1434.
Crossref
 
Williams ST, Wellington EMH (1982). Actinomycetes. In: Methods of soil analysis, Part 2, Chemical and microbiological properties. Ed. by Page AL, Miller RH, Keency OR, pp. 969-987. American Society of Agronomy/Soil Science Society of America, Madison.
 
Xiao-ming PX, Bi-run L, Mei-ying HU, Hui-fang S (2008). Insecticidal constituent of Streptomyces sp. 4138 and the bioactivity against Spodoptera exigua. Chinese J. Biological control. DOI: CNKI:SUN:ZSWF.0.2008-02-014.
 
Xiong L, Li J, Kong F (2004). Streptomyces sp. 173, an insecticidal micro-organism from marine. Lett. Appl. Microbiol. 38:32-37.
Crossref
 
Zhi-qin JI, Ji-wen Z, Shao-peng W, Wen-jun W (2007). Isolation and identification of the insecticidal ingredients from the fermentation broth of Streptomyces qinlingnensis. Chinese J. Pesticide Science DOI: CNKI:ISSN:1008-7303.0.2007-01-004.
 
Zhou CN (2001). A progress and development foresight of pesticidal microorganisms in China. Pesticides 40:8-10.
 
Zhou MZ, Sun XL, Sun XC, Vlak JM, Hu ZH, Van der Werf W (2005). Horizontal and vertical transmission of wild-type and recombinant Helicoverpa armigera single nucleocapsid nucleopolyherdrovirus. J. Invertebr. Pathol. 89:165-175.
Crossref
 
Zimmermann G (1993). The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 37:375-379.
Crossref

 


APA Vijayabharathi, R., Kumari, B. R., & Gopalakrishnan, S. (2014). Microbial agents against Helicoverpa armigera: Where are we and where do we need to go?. African Journal of Biotechnology , 13(18), 1835-1844.
Chicago Rajendran Vijayabharathi, Bhimineni Ratna Kumari and Subramaniam Gopalakrishnan. "Microbial agents against Helicoverpa armigera: Where are we and where do we need to go?." African Journal of Biotechnology 13, no. 18 (2014): 1835-1844.
MLA Rajendran Vijayabharathi, Bhimineni Ratna Kumari and Subramaniam Gopalakrishnan. "Microbial agents against Helicoverpa armigera: Where are we and where do we need to go?." African Journal of Biotechnology 13.18 (2014): 1835-1844.
   
DOI 10.5897/AJB2014.13746
URL http://academicjournals.org/journal/AJB/article-abstract/197669244429

Subscription Form