African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - 20C623757545


Vol.15(11), pp. 408-416 , March 2016
DOI: 10.5897/AJB2015.14991
ISSN: 1684-5315



Full Length Research Paper

Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies



Eugenia G. Ortiz Lechuga
  • Eugenia G. Ortiz Lechuga
  • Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel Barragán s/n. Ciudad Universitaria. C. P. 66455. San Nicolás de los Garza, Nuevo León, México.
  • Google Scholar
Isela Quintero Zapata
  • Isela Quintero Zapata
  • Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel Barragán s/n. Ciudad Universitaria. C. P. 66455. San Nicolás de los Garza, Nuevo León, México.
  • Google Scholar
Katiushka Arévalo Niño⃰
  • Katiushka Arévalo Niño⃰
  • Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel Barragán s/n. Ciudad Universitaria. C. P. 66455. San Nicolás de los Garza, Nuevo León, México.
  • Google Scholar







 Received: 18 September 2015  Accepted: 01 February 2016  Published: 16 March 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


In the present study, from a total of 100 strains isolated from waste vegetable oil contaminated soil, 38 bacterial and 14 fungi strains that presented positive lipolytic activity were obtained by detection through Rhodamine B Agar 0.02% w/v as a screening method. Additionally, two other enzymatic activities were determined. Positive proteolytic activity was evaluated in Casein Hydrolysis Agar and chitinolytic activity was identified by change in coloration in Bromocresol Purple Agar. Using these methodologies, we were able to report 18 microorganisms with two enzymatic activities and 6 microorganisms with all three enzymatic activities, thereby establishing these techniques as suitable and fast approaches for detection and semi-quantification of extracellular enzymatic activity.

Key words: Enzyme, lipases, proteases, chitinases, rhodamine B, soil.

Agrawal A, Kotasthane AS (2012). Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus 1(1):2-10.
Crossref

 

Ahmad MS, Noor ZM, Ariffin ZZ (2014). Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam. Int. J. Biol. Food Vet. Agric. Eng. 8(10):1070-1073.

 
 

Alken-Murray Corporation. Quality control method- 99 Preparation and Use of Rhodamine B Lipase Agar. P. O. Box 400, New Hyde Park, NY 11040. Available at: View

 
 

Alnahdi SH (2012). Isolation and screening of extracellular proteases produced by new Isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9):71-74.
Crossref

 
 

Anwar A, Saleemuddin M (1997). Alkaline-pH-acting digestive enzymes of the polyphagous insect pest Spilosoma obliqua: stability and potential as detergent additives. Biotechnol. Appl. Biochem. 25(1):43-46.
Crossref

 
 

Banerjee UC, Sani RK, Azmi W, Soni R (1999). Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Proc. Biochem. 35(1-2):213-219.
Crossref

 
 

Boonmahome P (2013). Lipase-Producing Bacterium and its Enzyme Characterization. J. Life Sci. Technol. 1(4):196-200.
Crossref

 
 

Caldwell BA (2005). Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637-644.
Crossref

 
 

Cárdenas J, Álvarez E, De Castro-Álvarez M, Sánchez Montero J, Valmaseda M, Elson SW, Sinisterra J (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J. Mol. Catal. B Enzym. 14(4-6):111-23.
Crossref

 
 

Carissimi M, Ottonelli Stopiglia, CD, Furtado de Souza T, Corbellini VA, Scroferneker ML (2007). Comparison of lipolytic activity of Sporothrix schenckii strains utilizing olive oil-Rhodamine b and tween 80. Tecno-lógica 11(1):33-36.

 
 

Chernin LS, De La Fuente L, Sobolev V, Haran S, Vorgias CE Oppenheim AB, Chet I (1997). Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl. Environ. Microbiol. 63(3):834-839.

 
 

El-Tarabily K, Soliman M, Nassar A, Al-Hassani H, Sivasithamparam H, McKenna F, Hardy G (2000). Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol. J. 49(5):573-583.
Crossref

 
 

Falch EA (1991). Industrial enzymes —Developments in production and application. Biotechnol. Adv. 9(4):643-658.
Crossref

 
 

Feng W, Wang X, Zhou W, Liu G, Wan Y (2010). Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. J. Insect Sci. 11(135):1-10.
Crossref

 
 

Fuji T, Tatara T, Minagawa M (1986). Studies on applications of lipolytic enzyme in detergency l. Effect of lipase from Candida cylindracea on removal of olive oil from cotton fabric. J. Am. Oil Chem. Soc. 63(6):796-799.
Crossref

 
 

Gooday GW (1990). The ecology of chitin degradation. In: Marshall KC (ed.), Advances in Microbial Ecology. Springer US. 11:387-430.
Crossref

 
 

Hasan F, Aamer A, Shah S, Javed S, Hameed A (2010). Enzymes used in detergents: Lipases. Afr. J. Biotechnol. 9(31):4836-4844.

 
 

Hou CT, Johnston TM (1992). Screening of Lipase Activities with Cultures from the Agricultural Research Service Culture Collection. J. Am. Oil Chem. Soc. 69(11):1088-1097.
Crossref

 
 

Kamat T, Rodriguez C, Naik CG (2008). Marine-derived fungi as a source of proteases. Indian J. Mar. Sci. 37(3):326-328.

 
 

Kim EK, Jang WH, Ko JH, Kang JS, Noh MJ, Yoo OJ (2001). Lipase and Its Modulator from Pseudomonas sp. Strain KFCC 10818: Proline-to-Glutamine Substitution at Position 112 Induces Formation of Enzymatically Active Lipase in the Absence of the Modulator. J. Bacteriol. 183(20):5937-5941.
Crossref

 
 

Kouker G, Jaeger KE (1987). Specific and Sensitive Plate Assay for Bacterial Lipases. Appl. Environ. Microbiol. 53(1):211-213.

 
 

Kuddus SM, Ahmad RIZ (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J. Genet. Eng. Biotechnol. 11(1):39-46.
Crossref

 
 

Kumar D, Lalit K, Sushil N, Chand R, Rajinder P, Gupta VK (2012). Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch. Appl. Sci. Res 4(4):1763-1770.

 
 

Lunge AG, Patil AS (2012). Characterization of efficient chitinolytic enzyme producing Trichoderma species: a tool for better antagonistic approach. Int. J. Sci. Environ. Technol. 1(5):377-385.

 
 

Mata Villegas T (2008). Evaluación de matrices de esporulación y formulación de un micoinsecticida a base de esporas el hongo entomopatógeno Beauveria bassiana. Instituto Politécnico Nacional [Tesis].

 
 

Noureddini H, Gao X, Philkana RS (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96(7):769-777.
Crossref

 
 

Pahoja MV, Sethar MA (2012). A review of enzymatic properties of lipase in plants, animals and microorganisms. J. Appl. Sci. 2(4):474-484.

 
 

Patil RS, Ghormade V, Deshpande MV (2000). Chitinolytic enzymes: an exploration. Enzyme Microb. Technol. 26(7):473-483.
Crossref

 
 

Pichyangkura R, Kudan S, Kultiyawong K, Sukwattanasinitt M, Aiba S (2002). Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr. Res. 337(6):557-559.
Crossref

 
 

Rabbani M, Bagherinejad MR Sadeghi HM, Shariat ZS, Etemadifar Z, Moazen F, Rahbari M, Mafakher L, Zaghian S (2013). Isolation and characterization of novel thermophilic lipase-secreting bacteria. Braz. J. Microbiol. 44(4):1113-1119.
Crossref

 
 

Rajeswari T, Palaniswamy M, Rose Begum S, Shyni Priya M, Padmapriya B (2011). Biosynthesis of novel alkaline lipase production from Penicillium chrysogenum suitable for detergent formulation. Res. J. Pharm. Biol. Chem. Sci. 2(3):128-141.

 
 

Rifaat HM, El-mahalawy AA, El-menofy HA, Donia SA (2010). Production, optimization and partial purification of lipase from Fusarium oxysporum. J. Appl. Sci. Environ. Sanit. 5(1):39-53.

 
 

Rodas Junco BA, Quero Bautista M, Maga-a Sevilla HF, Reyes Ramírez A (2009). Selection of native Bacillus sp. strains with chitinolytic-proteolytic activity isolated from tropical soil. Rev. Colomb. Biotecnol. 11(1):107-113.

 
 

Sánchez T, León J, Woolcott J, Arauco K (2004). Extracellular proteases produced by marine bacteria isolated from sea water contaminated with fishing effluents. Rev. Peru Boil. 11(2):179-186.

 
 

Sangeetha R, Arulpandi I, Geetha A (2011). Bacterial Lipases as Potential Industrial Biocatalysts: An Overview. Res. J. Microbiol. 6(1):1-24.
Crossref

 
 

Santhi R (2014). Microbial production of protease by Bacillus cereus using cassava waste water. Eur. J. Exp. Biol. 4(2):19-24.

 
 

Savitha J, Srividya S, Jagat, R, Payal P, Priyanki S, Rashmi GW, Roshini KT, Shantala YM (2007). Identification of potential fungal strain(s) for the production of inducible, extracellular and alkalophilic lipase. Afr. J. Biotechnol. 6(5):564-568.

 
 

Sierra G (1957). A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23(1):15-22.
Crossref

 
 

Snellman EA, Sullivan ER, Colwell RR (2002). Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 269(23):5771-5779.
Crossref

 
 

Vijayalakshmi S, Venkatkumar S, Thankamani V (2011). Screening of alkalophilic thermophilic protease isolated from Bacillus RV.B2.90 for Industrial applications. Res. Biotechnol. 2(3):32-41.

 
 

Vishwanatha T, Spoorthi NJ, Reena V, Divyashree BC, Siddalingeshwara KG, Karthic J, Sudipta KM (2010) Screening of substrates for protease production from Bacillus licheniformis. Int. J. Eng. Sci. Technol. 2(11):6550-6554.

 
 

Vyas PR, Deshpande MV (1991). Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. J. Gen. Appl. Microbiol. 37(3):267-275.
Crossref

 
 

Willerding AL, Oliveira LAD, Moreira FW, Germano MG, Chagas, AF (2011). Lipase Activity among Bacteria Isolated from Amazonian Soils. Enzyme Res. 2011:1-5.
Crossref

 

 


APA Lechuga, E. G. O., Zapata, I. Q. & Niño⃰, K. A. (2016). Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. African Journal of Biotechnology , 15(11), 408-416.
Chicago Eugenia G. Ortiz Lechuga, Isela Quintero Zapata and Katiushka Ar&evalo Niño⃰. "Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies." African Journal of Biotechnology 15, no. 11 (2016): 408-416.
MLA Eugenia G. Ortiz Lechuga, Isela Quintero Zapata and Katiushka Ar&evalo Niño⃰. "Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies." African Journal of Biotechnology 15.11 (2016): 408-416.
   
DOI 10.5897/AJB2015.14991
URL http://academicjournals.org/journal/AJB/article-abstract/20C623757545

Subscription Form