African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - BFE87F145603


Vol.13(26), pp. 2582-2592 , June 2014
DOI: 10.5897/AJB2013.13003
ISSN: 1684-5315



Review

Microbes as interesting source of novel insecticides: A review



B. Ratna Kumari
  • B. Ratna Kumari
  • Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar
R. Vijayabharathi
  • R. Vijayabharathi
  • Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar
V. Srinivas
  • V. Srinivas
  • Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar
S. Gopalakrishnan*
  • S. Gopalakrishnan*
  • Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
  • Google Scholar







 Received: 05 July 2013  Accepted: 10 June 2014  Published: 25 June 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Microbes are ubiquitous, survive in all sorts of environments and have a profound influence on the earth. In the present day plant protection scenario, development of resistance to chemical pesticides is the major hurdle in insect pest management. In recent years, several microbes with potential insecticidal properties have come to light. Viruses, bacteria, fungi and protozoa that are known to produce an array of metabolites or toxins, form the basis for microbial insecticides. Since these versatile organisms are amenable for genetic engineering, strains with good insecticidal properties can be identified, evaluated and utilized for pest control. This paper reviews the insecticidal properties of microbes and their potential utility in pest management.

 

Key words: Microbes, insecticides, metabolites, pest management.

Akbar W, Lord JC, Nechols JR, Loughin TM (2005). Efficacy of Beauveria bassiana for Red flour beetle when applied with plant essential oils or in mineral oil and organ silicone carriers. J. Econ. Entomol. 98(3):683-688.
Crossref
 
Anonymous (1998). United States Environmental Protection Agency, R.E.D. Facts, Bacillus thuringiensis, Prevention, Pesticides and Toxic substances (751 W), EPA-738-F-98-001.
 
Anonymous (2007). US Environmental Protection Agency (2007).
 
Askary H, Carriere Y, Belanger RR, Brodeur J (1998). Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocont. Sci. Technol. 8:23-32.
Crossref
 
Askary H, Yarmand H (2007). Development of the entomopathogenic hyphomycete Lecanicillium muscarium (Hyphomycetes: Moniliales) on various hosts. Eur. J. Entomol. 104:67-72.
Crossref
 
Bahar AA, Demirbag Z (2007). Isolation of pathogenic bacteria from Oberea linearis (Coleptera: Cerambycidae). Biologia 62:13-18.
Crossref
 
Bahar AA, Sezen K, Demirbağ Z, Nalçacioğlu R (2011). The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann. Microbiol. 62(2):647-653.
Crossref
 
Bandani AR, Butt TM (1999). Insecticidal, anti-feedant and growth inhibitory activities of efrapeptins, metabolites of the fungus Tolypocladium. Biocont. Sci. Technol. 9:499-506.
Crossref
 
Barreto MR, Loguercio LL, Valicente FH, Paiva E (1999). Biological control insecticidal activity of culture supernatants from Bacillus thuringiensis Berliner strains against Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) larvae. Ann. Soc. Entomol. Brasil 28(4):675.
Crossref
 
Bellotti AC (1999). Recent advances in cassava pest management. Annu. Rev. Entomol. 44:345-370.
Crossref
 
Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005). Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol. Lett. 243:467-472.
Crossref
 
Bonning BC, Possee RD, Hammock BD (1999). Insecticidal efficacy of a recombinant baculovirus expressing JHE-KK, a modified juvenile hormone esterase. J. Invert. Pathol. 73:234-236.
Crossref
 
Boonphong S, Kittakoop P, Isaka M, Palittapongarnpim P, Jaturapat A, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001). A new antimycobacterial, 3b-acetoxy-15a, 22-dihydroxyhopane, from the insect pathogenic fungus Aschersonia tubulata. Planta Med. 67:279-281.
Crossref
 
Bowen D (1995). Characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. [Ph.D. thesis], University of Wisconsin, Madison
 
Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, Ffrench-Constant RH (2000). Secreted proteases from Photorhabdus luminescens: Separation of the extracellular proteases from the insecticidal tc toxin complexes. Insect Biochem. Mol. Biol. 30:69-74.
Crossref
 
Bream AS, Ghazal SA, El-Aziz ZKA, Ibrahim SY (2001). Insecticidal activity of selected actinomycetes strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent. 66(2a):503-544.
 
Broderick NA, Raffa KF, Handelsman J (2006). Midgut bacteria required for Bacillus thuringiensis insecticidal activity. PNAS 103(41):15196-15199.
Crossref
 
Broderick NA, Robinson CJ, McMahon MD, Holt J, Handelsman J, Raffa KF (2009). Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 7:11.
Crossref
 
Brooks WM (1988). Entomogenous Protozoa. Handbook of Natural Pesticides, Vol. V: Microbial Insecticides, Part A. In: Ignoffo CM, Mandava NB (eds) Entomogenous Protozoa and Fungi, CRC Press, Boca Raton, FL. pp. 1-149.
 
Burden JP, Hails RS, Windass JD, Suner MM, Cory JS (2000). Infectivity, speed of kill, and productivity of a Baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusia ni. J. Invert. Pathol. 7:226-236.
Crossref
 
Burnell AM, Stock SP (2000). Heterorhabditis, Steinernema and their bacterial symbionts - lethal pathogens of insect. Nematology 2:31-42.
Crossref
 
Butt TM, Carreck NL, Ibrahim L, Williams IH (1998). Honey bee mediated infection of pollen beetle (Meligethes spp.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci. Technol. 8:533-538.
Crossref
 
Chang JH, Choi JY, Jin BR, Roh JY, Olszewski JA, Seo SJ, O'Reilly DR, Je YH (2003). An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invert. Pathol. 84:30-37.
Crossref
 
Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004). Bacterial Insecticidal Toxins. Crit. Rev. Microbiol. 30:33-54.
Crossref
 
Choi JY, Wang Y, Kim YS, Kang JN, Roh JY, Woo SD, Jin BR, Je YH (2008). Insecticidal activities of recombinant Autographa californica nucleopolyhedrovirus containing a scorpion neurotoxin gene using promoters from Cotesia plutellae bracovirus. J. Asia Pac. Entomol. 1:155-159.
Crossref
 
Clement SL, Elberson LR, Bosque-Perez NA, Schotzko DJ (2005). Detrimental and neutral effects of wild barley-Neotyphodium fungal endophyte associations on insect survival. Entomol. Exp. Appl. 114:119-125.
Crossref
 
Companta S, Clement C, Sessitsch A (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669-678.
Crossref
 
Daisy S, Strobel G, Ezra D, Castillo UF Baird G, Hess WM (2002). Muscodor vitigenus anam. sp. nov. An endophyte from Paullinia paulliniodes. Mycotaxon 84:39-50.
 
Desai JD, Banat IM (1997). Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61:414-764.
 
Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010). Preliminary evaluation of anopheles mosquito larvicidal efficacy of mangrove actinobacteria. Int. J. Appl. Biol. Pharm. Technol. 1(2):374-381.
 
Dingle J, McGee PA (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycol. Res.107:310-316.
Crossref
 
Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21:1307-1313.
Crossref
 
Elmi AA, West CP, Robbins RT, Kirkpatrick TL (2000). Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci. 55:166-172.
Crossref
 
Fang J, Xu XL, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen ZC (2007). Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol. 73:956-961.
Crossref
 

FAO (2012).

View

 
Faria M de, Wraight SP (2001). Biological control of Bemisia tabaci with fungi. Crop Prot. 20(9):767-778.
Crossref
 
Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M (2012). Toxicity of proteins secreted by Entomopathogenic fungi against Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Agric. Biol. 14(2):291-295.
 
French-Constant RH, Bowen DJ (2000). Novel insecticidal toxins from nematode-symbiotic bacteria. Cell. Mol. Life Sci. 57:828-833.
Crossref
 
Gadelhak GG, EL-Tarabily KA, AL-Kaabi FK (2005). Insect control using chitinolytic soil actinomycetes as biocontrol agents. Int. J. Agric. Biol. 7(4):627-633.
 
George J, Laurence GR, Frederick MA (2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182(13):3843.
Crossref
 
Goettel MS, Hajek AE (2001). 'Evaluation of non-target effects of pathogens used for management of Arthropods'. In: Wajnberg E, Scott JK, Quimby PC, (eds) Evaluating indirect ecological effects of Biological Control, CABI Press, Wallingford, UK. pp. 81-97.
 

Gopalakrishnan S, Ranga Rao GV, Humayun P, Rameshwar Rao V, Alekhya G, Simi J, Deepthi K, Sree Vidya M, Srinivas V, Mamatha L, Rupela O (2011). Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr. J. Biotechnol. 10(73):16667-16673.

View

 
Govindarajan M, Jebanesan A, Reetha D (2005). Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito Culex quinquefasciatus Say. Trop. Biomed. 22(1):1-3.
Pubmed
 
Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro BM (2010). Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virology J. 7:143.
Crossref
 
Grzywacz D, Richards A, Rabindra RJ, Saxena H, Rupela OP (2005). Efficacy of biopesticides and natural plant products for Heliothis/Helicoverpa control. In: Sharma HC(ed) Heliothis/ Helicoverpa Management-Emerging Trends and Strategies for Future Research, Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi. pp. 371-389.
 
Guo HF, Fang JC, Liu BS, Wang JP, Zhong WF, Wan FH (2007). Enhancement of the biological activity of nucleopolyhedrovirus through disruption of the peritrophic matrix of insect larvae by chlorfluazuron. Pest Manag. Sci. 63:68-74.
Crossref
 
Harman GE (2011). Trichoderma - not just for biocontrol anymore. Phytoparasitica 39:103-108.
Crossref
 
Henry JE, Oma EA (1981). Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. In: Burges HD (ed) Microbial Control of Pests and Plant Diseases 1970-1980, Academic Press, London. pp. 573-586.
 
Herbert AK (2010). The spinosyn family of insecticides: realizing the potential of natural products research. J. Antibiot. 63:101-111.
Crossref
 
Hoell IA, Klemsdal SS, Vaaje-Kolstad G, Horn SJ, Eijsink VGH (2005). Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain. Biochim. Biophys. Acta. 1748:180-190.
Crossref
 
Hoover K, Kishida KT, DiGiorgio LA, Workman J, Alaniz SA, Hammock BD, Duffey SS (1998). Inhibition of baculoviral disease by plant-mediated peroxidase activity and free radical generation. J. Chem. Ecol. 24:1949-2001.
Crossref
 
Hu QB, Ren SX, An XC, Qian MH (2007). Insecticidal activity influence of destruxins on the pathogenicity of Paecilomyces javanicus against Spodoptera litura. J. Appl. Entomol. 131:262-268.
Crossref
 
Huamei L, Sheng Qf, Yongxia W, Wenjun L, Jie Z (2008). Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647 isolated from a forest soil. World J. Microbiol. Biotechnol. 24: 2243-2248.
Crossref
 
Hussain AA, Mostafa SA, Ghazal SA, Ibrahim SY (2002). Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. Afr. J. Mycol. Biotechnol. 10:63-80.
 
Ignoffo CM (1981). The fungus Nomuraea rileyi as a microbial insecticide: fungi. In: Burges, HD (ed) Microbial Control of Pests and Plant Diseases, Academic Press, London, UK. pp. 513-538.
 
Ignoffo CM, Garcia C, Zuidema D, Vlak JM (1995). Relative in vivo activity and simulated sunlight-UV stability of inclusion bodies of a wild-type and an engineered polyhedral envelope negative isolate of the nucleopolyhedrosis virus of Autographa californica. J. Invert. Pathol. 66:212-213.
Crossref
 
Imai N, Ses A, El-Singabi NR, Iwanaga M, Matsumoto S, Iwabuchi K, Maeda S (2000). Insecticidal effects of a recombinant baculovirus expressing a scorpion toxin LqhiT2. J. Seric. Sci. Jpn. 69:197-205.
 
Jallow MFA, Dugassa-Gobena D, Vidal S (2004). Indirect interaction between and unspecialized endophytic fungus and a polyphagous moth. Basic Appl. Ecol. 5:183-191.
Crossref
 
Jensen JG, Popay AHJ (2004). Perennial ryegrass infected with AR 37 endophyte reduces survival of porina larvae. N. Z. Plant Prot. 57:323-328.
 
Keller S (2000). Use of Beauveria brongniartii in Switzerland and its acceptance by farmers. Bull. OILB/SROP 23(8):67-71.
 
Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999). The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J. Invert. Pathol. 74:213-223.
Crossref
 
Kim JJ, Goettel MS, Gillespie DR (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus Sphaerotheca fuliginea. Biol. Control 40:327-332.
Crossref
 
Kim JJ, Goettel MS, Gillespie DR (2008). Evaluation of Lecanicillium longisporum Vertalec for simultaneous suppression of cotton aphid, Sphaerotheca fuliginea, on potted cucumbers. Biol. Control 45:404-409.
Crossref
 
Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002). Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J. Nat. Inst. Agri. Sci. Technol. pp. 7-14.
 
Klingen I, Eilenberg J, Meadow R (1998). Insect pathogenic fungi from northern Norway baited on Delia floralis (Diptera, Anthomyiidae) and Galleria mellonella (Lepidoptera, Pyralidae). IOBC wprs Bull. 21:121-124.
 

Konstantopoulou MA, Mazomenos BE (2005). Evaluation of Beauveria bassiana and B. brongniartii strains and four wild-type fungal species against adults of Bactrocera oleae and Ceratitis capitata. Biol. Control 50:293-305.

Kroiss J, Kaltenpoth MB, Schneider B, Schwinger M, Hertweck C, Maddula R, Strohm E, Svatos A (2010). Symbiotic Stereptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6:261-263.
Crossref
 
Kumari V, Singh NP (2009). Spodoptera litura nuclear polyhedrosis virus (NPV-S) as a component in Integrated Pest Management (IPM) of Spodoptera litura (Fab.) on cabbage. J. Biopestic. 2:84-86.
 
Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001). Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies Anastrepha ludens (Diptera: Tephritidae). Curr. Microbiol. 42:290-294.
Crossref
 
Lacey LA, Neven LG (2006). The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J. Invert. Pathol. 91:195-198.
Crossref
 
Lau GW, Goumnerov BC, Walendziewicz CL, Hewitson J, Xiao W, Mahajan-Miklos S, Tompkins RG, Perkins LA, Rahme LG (2003). The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71:4059-4066.
Crossref
 
Lewis LC, Berry EC, Obrycki JJ, Bing LA (1996). Aptness of insecticides (Bacillus thuringiensis and carbofuran) with endophytic Beauveria bassiana, in suppressing larval populations of the European corn borer. Agric. Ecosyst. Environ. 57:27-34.
Crossref
 
Lewis LC, Bing LA (1991). Bacillus thuringiensis Berliner and Beauveria bassiana (Balsamo) Vuillemin for European corn borer control: Program for immediate and season long suppression. Can. Entomol. 123:387-393.
Crossref
 
Lewis LC, Bruck DJ, Gunnarson RD, Bidne KG (2001). Assessment of plant pathogenicity of endophytic Beauveria bassiana in Bt transgenic and non-transgenic corn. Crop Sci. 41:1395-1400.
Crossref
 
Li Z, Wang Z, Peng G, Yin Y, Zhao H, Cao Y, Xia Y (2007). Regulation of extracellular acid phosphatase biosynthesis by culture conditions in entomopathogenic fungus Metarhizium anisopliae strain. Ann. Microbiol. 57(4):565-570.
Crossref
 
Li ZZ, Li CR, Huang B, Meizhen MZ (2001). Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill. an important entomogenous fungus. Chin. Sci. Bull. 46(9):751-753.
Crossref
 
Liu F, Yang W, Ruan L, Sun M (2013). A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann. Microbiol. 63(3):1131-1135.
Crossref
 
Mathew SO, Sandhu SS, Rajak RC (1998). Bioactivity of Nomuraea rileyi against Spilosoma obliqua: effect of dosage, temperature and relative humidity. J. Ind. Bot. Soc. 77:23-25.
 
Mazet I, Hung SY, Boucias DG (1995). Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. J. Invert. Pathol. 64:200-207.
 
Moscardi F (1999). Assessment of the applications of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44:257-289.
Crossref
 
Mostakim M, Soumya E, Mohammed IH, Ibnsouda SK (2012). Biocontrol potential of a Pseudomonas aeruginosa strain against Bactrocera oleae. Afr. J. Microbiol. Res. 6(26):5472-5478.
 

Muratoglu H, Kati H, Demirbag Z Sezen K (2009). High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). Afr. J. Biotechnol. 8(24):7111-7115.

View

 
Muratoglu H, Nalcacioglu, Demibag Z (2010). Transcriptional and structural analyses of Amsacta moorei entomopoxvirus protein kinase gene (AMV197, pk). Ann. Microbiol. 60:523-530
Crossref
 
Murty MG, Srinivas G, Sekar V (1994). Production of a mosquitocidal exotoxin by a Pseudomonas fluorescens strain. J. Invert. Pathol. 64:68-70.
Crossref
 
Nishiwaki H, Nakashima K, Ishida C, Kawamura T, Matsuda K (2007). Cloning, functional characterization, and mode of action of a novel insecticidal poreforming toxin, sphaericolysin, produced by Bacillus sphaericus. Appl. Environ. Microbiol. 73:3404-3411.
Crossref
 
Nunez E, Iannacone J, Gomez H (2008). Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis 1846) (Hemiptera: Aleyrodidae). Chil. J. Agric. Res. 68(1):21-30.
 
Oliveira I, Pereira A, Bento A, Baptista P (2011). Viability of Beauveria bassiana isolates after storage under several preservation methods. Ann. Microbiol. 61:339-344.
Crossref
 
Osborn F, Berlioz L, Vitelli-Flores J, Monsalve W, Dorta B, Lemoine VR (2002). Pathogenic effects of bacteria isolated from larvae of Hylesia metabus Crammer (Lepidoptera: Saturniidae). J. Invert. Pathol. 80:7-12.
Crossref
 
Patil CD, Borase HP, Salunke BK, Patil SV (2013). Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitol. Res. 112:3283-3288.
Crossref
 
Peng HY, Chen XW, Jiang Y (1998). Controlling Dendrolimus punctatus with Trichogramma dendrolimi carrying cytoplasmic polyhedrosis virus. Chin. J. Biol. Control 14:111-114.
 
Pinedo FJR, Moscardi F, Luque T, Julie A, Olszewski Bergmann MR (2003). Inactivation of the ecdysteroid UDP-glucosyltransferase (egt) gene of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) improves its virulence towards its insect host. Biol. Control 27:336-344.
Crossref
 
Pingel RL, Lewis LC (1996). The fungus Beauveria bassiana (Balsamo) Vuillemin in a corn ecosystem: Its effect on the insect predator Coleomegilla maculata De Geer. Biol. Control 6:137-141.
Crossref
 
Pitterna T, Cassayre J, Huter O (2009). New Ventures in the Chemistry of Avermectins. Bioorg. Med. Chem. 17:4085-4095.
Crossref
 
Prikhod'ko Prikhod'ko GG, Popham HJR, Felcetto TJ, Ostlind DA, Warren VA, Smith MM, Garsky VM, Warmke JW, Cohen CJ, Miller LK (1998). Effects of simultaneous expression of two sodium channel toxin genes on the properties of baculoviruses as biopesticides. Biol. Control 12:66-78.
Crossref
 
Priyanka J, Srivastava N, Prakash S (2001). Chrysosporium tropicum efficacy against Anopheles stephensi larvae in the laboratory. J. Am. Mosq. Control Assoc. 17:127-130.
Pubmed
 
Purcell JP, Greenplate JT, Jennings MG, Ryerse JS, Pershing JC, Sims SR, Prinsen MJ, Corbin DR, Tran M, Sammons RD, Stonard RJ (1993). Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae. Biochem. Biophys. Res. Commun.196:1406-1413.
Crossref
 
Quesada-Moraga E, Carrasco-Diaz JA, Santiago-Alvarez C (2006). Insecticidal and anti-feedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 130:442-452.
Crossref
 
Quesada-Moraga E, Vey A (2004). Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol. Res. 108:441-452.
Crossref
 
Rabindra RJ, Singh A, Saxena H, Chandish BR (2005). Biological control of insect pests and diseases in food legumes. In: International Food Legumes Research Conference, Abstracts-4, October 18 -22, New Delhi. pp. 25-26.
 
Rajak RC, Sandhu SS, Mukherjee S, Kekre S, Gupta A (1991). Natural outbreak of Nomuraea rileyi on Junonia orithyia. J. Biol. Control 5(2):123-124.
 
Ranga Rao GV, Rupela OP, Rameshwar Rao V, Reddy YVR (2007). Role of biopesticides in crop protection: Present status and future prospects. Indian J. Plant Prot. 35(1):1-9.
 
Revathi N, Ravikumar G, Kalaiselvi M, Gomathi D, Uma C (2011). Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. J. Plant Pathol. Microbiol. 2:114.
Crossref
 
Sahayaraj K, Borgio JF (2010). Virulence evaluation of entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin (Deuter.: Hyphomycetes) on seven insect pests. Indian J. Agric. Sci. 44:195-200.
 
Salgado VL (1998). Studies on the mode of action of Spinosad: Insect symptoms and physiological correlates. Pestic. Biochem. Physiol. 60:91-102.
Crossref
 
Sandhu SS, Rajak RC, Hasija SK (2000). Potential of entomopathogens for the biological management of medically important pest: Progress and prospect. In: Glimpses in Plant Sciences. pp. 110-117.
 
Sandra WW, Douglas IG (2004). Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol. Control 29:155-168.
Crossref
 
Seleena P, Lee HL (1994). Insecticidal activity of a Malaysian isolate of Aspergillus niger. Asean J. Sci. Technol. Dev. 11(2):47-53.
 
Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011). Increase of the Bacillus thuringiensis secreted toxicity against lepidopteran larvae by homologous expression of the vip3LB gene during sporulation stage. Curr. Microbiol. 63:289-294.
Crossref
 
Seo JH, Yeo JS, Cha HJ (2005). Baculoviral Polyhedrin-Bacillus thuringiensis toxin fusion protein: A Protein-based bio-insecticide expressed in Escherichia coli. Biotechnol. Bioeng. 92(2):166-172.
Crossref
 
Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Alun J, Morgan W (2006). Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl. Environ. Microbiol. 72(9):5895-5907.
Crossref
 
Sevim A, Demirbag Z, Demirturk I (2010). A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk. J. Agric. For. 34:333-342.
 
Sezen K, Demir I, Demirbag Z (2005). Investigations on bacteria as a potential biological control agent of summer chafer Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J. Microbiol. 43:463-468.
Pubmed
 
Shakeri J, Foster HA (2007). Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microb. Technol. 40(5):961-968.
Crossref
 
Sharaf EF (2005). A potent chitonylitic activity of Alternaria alternata isolated from Egyptian black sand. Pol. J. Microbiol. 54(2):145-151.
Pubmed
 
Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L, James R, Ffrench-Constant R (2002). The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol. Lett. 214:241-249.
Crossref
 
Snyder DE, Meyer J, Zimmerman AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR. (2007). Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet. Parasitol. 150(4):345-351.
Crossref
 
Solter LF, Becnel JJ (2000). Entomopathogenic microsporida. Field Manual of Techniques in Invertebrate Pathology. In: Lacey LA, Kaya HK, (eds) Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests. Kluwer Academic, Dordrecht. pp. 231-254.
 
Srinivasa M, Jagadeesh Babu CS, Anitha CN, Girish G (2008). Laboratory evaluation of available commercial formulations of HaNPV against Helicoverpa armigera (Hub.). J. Biopestic. 1:138-139.
 
Stinson AM, Zidack NK, Strobel GA, Jacobsen BJ (2003). Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling disease of sugar beet and Verticillium wilt of eggplant. Plant Dis. 87:1349-1354.
Crossref
 
Strasser H, Vey A, Butt TM (2000). Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocon. Sci. Tech. 10:717-735.
Crossref
 
Sundarapandian S, Sundaram MD, Tholkappian P, Balasubramanian V (2002). Mosquitocidal properties of indigenous fungi and actinomycetes against Culex quinquefasciatus Say. J. Biol. Control 16:89-91.
 
Szolajska E, Poznanski J, Ferber ML, Michalik J, Gout E, Fender P, Bailly I, Dublet B, Chroboczek J (2004). Poneratoxin, a neurotoxin from ant venom.Structure and expression in insect cells and construction of a bio-insecticide. Eur. J. Biochem. 271:2127-2136.
Crossref
 
Thakur R, Sandhu SS (2010). Distribution, occurrence and natural invertebrate hosts of indigenous entomopathogenic fungi of Central India. Indian J. Microbiol. 50(1):89-96.
Crossref
 
Thiery I, Frachon E (1997). Identification, isolation, culture and preservation of enthomopathogenic bacteria. In: Lacey LA (ed) Manual of Techniques in Insect Pathology, Academic Press, London. pp. 55-73.
Crossref
 
Tuan SJ, Hou RF, Lee CF, Chao YC (2007). High level production of polyhedra in a scorpion toxin containing recombinant baculovirus for better control of insect pests. Bot. Stud. 48:273-281.
 
Vandermeer J, Perfecto I, Liere H (2009). Evidence for hyperparasitism of coffee rust Hemileia vastatrix by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol. 58:636-641.
Crossref
 
Vega FE, Posada F Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008). Entomopathogenic fungal endophytes. Biol. Control 46:72-82.
Crossref
 
Vey A, Hoagland RE, Butt TM (2001). Toxic metabolites of fungal control agents. In: Butt TM, Jackson C, Magan N (eds). Fungi as Biocontrol Agents, CAB International, New York. pp. 311-346.
Crossref
 
Vimala Devi PS (2001). Prospects of using Nomuraea rileyi for the management of crop pests. In: Rabindra RJ, Kennedy JS,Sathiah N, Rajasekaran B, Srinivasan MR (eds). Microbial Control of Crop Pests, Graphic Skill Publisher, Coimbatore. pp. 80-94.
 
Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycolog. Res. 109:610-618.
Crossref
 
Yankouskaya A (2009). Application of biological insecticide Pecilomicine-B for greenhouse pest control. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Sodininkystė Ir Daržininkystė 28(3):249-258.
 
Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997). The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 63:532-536.
Pubmed
 
Zhang GY, Sun XL, Zhang ZX, Zhang ZF, Wan FF (1995). Production and effectiveness of the new formulation of Helicoverpa virus pesticide-emulsifiable suspension. Virol. Sin. 10:242-247.
 
Zhang J, Zhao J, Li D, Liu S, Li L, Sun Q, Huang M, Yang Z (2009). Cloning of the gene encoding an insecticidal protein in Pseudomonas pseudoalcaligenes. Ann. Microbiol. 59(1):45-50
Crossref
 
Zhou MZ, Sun HC, Hu ZH, Sun XL (2004). SOD enhances infectivity of Helicoverpa armigera single nucleocapsid nucleopolyhedrosis against Helicoverpa. armigera larvae. Virol. Sin. 18:506-507.
 
Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006). Vegetative insecticidal protein enhancing the toxicity of Bacillus thuingiensis subsp kurstaki against Spodoptera exigua. Lett. Appl. Microbiol. 42:109-114.
Crossref
 
Zhu JQ, Lei CL, Peng HY (2002). Studies on the effect of Trichogramma dendrolimi carrying NPV to suppress Helicoverpa armigera. Nat. Enemies Insects 24:20-25.

 


APA Ratna Kumari, B., Vijayabharathi, R., Srinivas, V., & Gopalakrishnan, S. (2014). Microbes as interesting source of novel insecticides: A review. African Journal of Biotechnology , 13(26), 2582-2592.
Chicago B. Ratna Kumari, R. Vijayabharathi, V. Srinivas and S. Gopalakrishnan. "Microbes as interesting source of novel insecticides: A review." African Journal of Biotechnology 13, no. 26 (2014): 2582-2592.
MLA B. Ratna Kumari, et al. "Microbes as interesting source of novel insecticides: A review." African Journal of Biotechnology 13.26 (2014): 2582-2592.
   
DOI 10.5897/AJB2013.13003
URL http://academicjournals.org/journal/AJB/article-abstract/BFE87F145603

Subscription Form