African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - C758D4354080


Vol.14(27), pp. 2191-2201 , July 2015
DOI: 10.5897/AJB2015.14577
ISSN: 1684-5315



Full Length Research Paper

In vitro embryo rescue and plant regeneration following self-pollination with irradiated pollen in cassava (Manihot esculenta Crantz)



Mary Buttibwa
  • Mary Buttibwa
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar
Robert S. Kawuki
  • Robert S. Kawuki
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar
Arthur K. Tugume*
  • Arthur K. Tugume*
  • Department of Biological Sciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
  • Google Scholar
Jacinta Akol
  • Jacinta Akol
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar
Stephen Magambo
  • Stephen Magambo
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar
Hellen Apio
  • Hellen Apio
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar
Erwin Heberle-Bors
  • Erwin Heberle-Bors
  • Max-F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
  • Google Scholar
Maria Wedzony
  • Maria Wedzony
  • Institute of Biology, Pedagogical University of Krakow, Podchorazych, 30-084, Krakow, Poland.
  • Google Scholar
Hernan Ceballos
  • Hernan Ceballos
  • International Center for Tropical Agriculture (CIAT), Apartado, Aereo, 6713, Cali, Colombia.
  • Google Scholar
Clair Hershey
  • Clair Hershey
  • International Center for Tropical Agriculture (CIAT), Apartado, Aereo, 6713, Cali, Colombia.
  • Google Scholar
Yona Baguma
  • Yona Baguma
  • National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
  • Google Scholar







 Received: 19 March 2015  Accepted: 17 June 2015  Published: 14 July 2015

Copyright © 2015 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Cassava is a highly heterozygous species; hence, current methods used in classical cassava breeding cannot match the urgent need to high yielding varieties. Recently, progress was made through androgenesis and gynogenesis as pathways for raising doubled cassava haploid lines to overcome problems associated with cassava’s inherent reproductive biology, but these efforts were limited (no candidate cassava plantlets were regenerated). For the first time, this study shows that pollen irradiation coupled with self-pollination and embryo rescue regenerated 62 candidate cassava plantlets. Plants of an elite cassava variety, Nase14, served as a mother plant and as the pollen donor for the irradiation. Irradiation dosages of 50 to 250 Gray studied across five pollination events and 300 or 500 Gray in one pollination event caused a reduction in pollen germination up to 67.0%. By 15 days after pollination (DAP) with irradiated pollen, up to 89.7% of the pollinated flowers had aborted. By embryo rescue time (42 DAP), significant differences were observed in number of fruits, seeds and embryos generated, with the non-irradiated pollen treatments having significantly higher numbers. Sixteen (16) heterozygous SSR markers in the parent and ploidy analysis showed that none of the regenerated plants was haploid or homozygous. However, the plantlets resulting from pollination with non-irradiated pollen had 56.2% homozygous loci, while progeny derived from irradiated treatments had frequencies of homozygous loci between 28.1 and 55.0%. This is the first time to use irradiated pollen in cassava as a pathway to generate candidate plantlets as an initial step in double haploid production. 
 
Key words: Cassava, doubled haploids, embryo rescue, plant regeneration, pollen germination, pollen irradiation.
 

Aerni P (2006). Mobilizing science and technology for development: the case of cassava biotechnology network (CBN). AgBioForum. 9(1): 1-14.
 
Akinbo O, Labuschagne M, Fregene M (2010). Embryo rescue as a method to develop and multiply a backcross population of cassava (Manihot esculenta Crantz) from an interspecific cross of Manihot esculenta ssp. Flabellifolia. Afr. J. Biotechnol. 9(42):7058-7062.
 
Alison M, Ferric R, Möllers C (2011). Haploids and doubled haploids in Brassica spp for genetic and genome research. Plant Cell Tiss. Organ Cult. 104(3): 375-386.
Crossref
 
Andersen SB (2005). Haploids in the improvement of woody species. In: Haploids in Crop Improvement II, Vol. 56 (Palmer CE, Keller WA, Kasha KJ, eds), pp. 243-257. Heidelberg, Germany: Springer.
Crossref
 
Belicuas PR, Guimarães CT, Paiva LV, Duarte JM, Maluf WR, Paiva E (2007). Androgenetic haploids and SSR markers as tools for the development of tropical maize hybrids. Euphytica 156(1-2):95-102.
Crossref
 
Brewbaker JL, Kwack BH (1963). The essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 50(9):747-758.
Crossref
 
Bull SE, Ndunguru J, Gruissem W, Vanderschuren H (2011). Cassava: constraints to production and transfer of biotechnology to African laboratories. Plant Cell Rep. 30(5): 779-787.
Crossref1
 
Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010). Cassava: the drought, war, and farmine crop in a changing world. Sustainability 2(11):3572-35607.
Crossref
 
Catano K, Plazas J, Roca WM (1993). Development of methodologies for the isolation and culture of cassava immature pollen and zygotic embryos. In: Roca WM, Thro AM (eds) Proc Ist lilt Sci Meet of the Cassava Biotechnology Network. CIAT, Cartagena de Indias, Columbia, pp. 185-190.
 
Ceballos H, Hershey C, Becerra-López-Lavalle LA (2012) New approaches to cassava breeding. Plant Breeding Rev. 36:427-504.
Crossref
 
Ceballos H, Iglesias CA, Perez JC, Dixon AGO (2004). Cassava breeding: opportunities and challenges. Plant Mol. Biol. 56(4):503-516.
Crossref
 
Chavarriaga-Aguirre P, Halsey M (2005). Cassava (Manihot esculenta Crantz): Reproductive biology and practices for confinement of experimental field trials. Report prepared for the Program for Biosafety Systems. Washington, DC: Program for Biosafety Systems.
 
Crow JF (1998). 90 years ago: The beginning of hybrid maize. Genetics 148(3):923-928.
 
 
Drumeva M, Berville A, Ivanov P, Nenova N, Encheva J (2005) Molecular investigations on the double haploid origin of sunflower lines (Helianthus annuus L.) developed through gamma-induced parthenogenesis. Biotech. Biotechnol. Equip. 19(3):46-50.
Crossref
 
Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 8(4):377-424.
Crossref
 
East EM (1908). Inbreeding in corn. Rep. Conn. Agric. Exp. Stn. pp. 419-428
 
El-Shakawy MA (2004). Cassava biology and physiology. Plant Mol. Biol. 56(4): 481-501.
Crossref
 
Fang X, Turner NC, Yan G, Li F, Siddique KHM (2015). Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 61(2): 335-345.
Crossref
 
FAO (2013). Cassava's huge potential as a 21st century crop. http://www.fao.org/news/story/en/item/176780/icode/ (Accessed on 8th October 2014).
 
FAOSTAT (2014). Food and Agriculture Organization of the United Nations, Statistics Division. http://faostat3.fao.org/faostat-gateway/go/to/compare/Q/QC/E (Accessed on 8th October 2014).
 
Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007). The resurgence of haploids in higher plants. Trends Plant Sci. 12(8): 368-375.
Crossref
 
Fregene M, Ospina JA, Roca W (1999). Recovery of cassava (Manihot esculenta Crantz) plants from culture of immature zygotic embryos. Plant Cell Tiss. Organ Cult. 55(1): 39-43.
Crossref
 
Germana MA (2011). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 30(5): 839-857.
Crossref
 
Jain SM, Sopary SK, Veilleux RE (1996). In vitro haploid production in higher plants, volumes 1-5. Kluwer Academic Publishers, Dordrecht Boston London.
Crossref
 
Jarvis A, Ramirez-Villegas J, Campo BVH, Navarro-Racines C (2012). Is cassava the answer to African climate change adaptation? Trop. Plant Biol. 5(1): 9-29.
Crossref
 
Kawano K (1980). Cassava. In: Fehr WR, Hadley HH (eds.), Hybridization of Crop Plants. ASA, CSSA. Madison, Wisconsin. pp. 225-233.
 
Kawano K, Amaya A, Daza P, Rios M (1978). Factors affecting efficiency of hybridization and selection in cassava. Crop Sci. 18(3):373-376.
Crossref
 
Kawuki RS, Pariyo A, Amuge T, Nuwamanya E, Ssemakula G, Tumwesigye S, Bua A, Baguma Y, Omongo C, Alicai T, Orone J (2011). A breeding scheme for local adoption of Cassava (Manihot esculenta Crantz). J. Plant Breed. Crop Sci. 3(7): 120-130.
 
Kebede AZ, Dhillon BS, Schipprack W, Araus JL, Banziger M, Semagn K, Alvarado G, Melchinger AE (2011). Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica 180(2): 219-226.
Crossref
 
Koṧmrlj K, Murovec J, Bohanec B (2013). Haploid induction in hull-less seed pumpkin through parthenogenesis induced by X-ray irradiated pollen. J. Am. Soc. Hort. Sci. 138(4): 310-316.
 
Liu K, Muse SV (2005). Power Marker: Integrated analysis environment for genetic marker data. Bioinformatics 21(9): 2128-2129.
Crossref
 
Magoon ML, Khanna KR (1963). Haploids. Caryologia 16: 191-234.
Crossref
 
Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) (2003a). Doubled Haploid Production in Crop Plants: a Manual. pp. 480. Dordrecht, Netherlands: Kluwer Academic Publishers.
Crossref
 
Maluszynski M, Kasha KJ, Szarejko I (2003b). Published double haploid protocols in plant species. In: Haploid Production in Crop Plants: a Manual (Maluszynski, M, Kasha KJ, Forster BP, Szarejko I, eds), pp. 309-335. Dordrecht, Netherlands: Kluwer Academic Publishers.
Crossref
 
Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001). Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet. 102(1): 21-31.
Crossref
 
Mbahe RE, Aken'ova ME, Hahn SK (1994). Germination of Cassava (Manihot esculenta Crantz) pollen. ISHS Acta Hort.380: 172-177.
 
Meireles da Silva R, Bandel G, Martins PS (2003). Mating system in an experimental garden composed of cassava (Manihot esculenta Crantz) ethnovarieties. Euphytica 134(2): 127-135.
Crossref
 
Musial K, Pryzwara L (1998). Influence of irradiated pollen on embryo and endosperm development in kiwifruit. Ann. Bot. 82(2): 747-756.
Crossref
 
Nasertorabi M, Madadkhah E, Moghbeli E, Grouh MSH, Soleimani A (2012). Production of haploid lines from parthenogenetic Iranian melon plants obtained of irradiated pollen (Cucumis melo L). Int. Res. J. Appl. Bas. Sci. 3(8): 1585-1589.
 
Nassar NMA, Ortiz R (2006). Cassava Improvement: Challenges and Impacts. J. Agric. Sci. 145(2):163-171.
Crossref
 
Nasution O, Sitorus AC, Nelson SPC, Forster BP, Caligari PDS (2013). A high-throughput flow cytometry method for ploidy determination in oil palm. J. Oil Palm Res. 25(2):265-271.
 
Ogburia MN, Adachi T, Yabuya T (2000). Ovule dichotomy per locule of the trilocular pistil in Cassava, Manihot esculenta: a useful abnormality for increased seed production. Plant Breed. 119(2):191-192.
Crossref
 
Orrego JI, Hershey CH (1984) Almacenamiento del polen de yuca (Manihot esculenta Crantz) por medio de liofilizacion y varios regimenes de humedad y temperatura. Acta Agronomica 34(1):21-24.
 
Otto F (1990). DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Meth. Cell Biol. 33:105-110.
Crossref
 
Peixe A, Campus MD, Cavaleiro C, Barroso J, Pias MS (2000). Gamma-irradiated pollen induces the formation of 2n-endosperm and abnormal embryo development in European plum (Prunus domestica L, cv "Rainha Claudia Verde"). Scientia Hort. 86(4):267-278.
Crossref
 
Perera PIP, Ordo-ez OA, Becerra Lopez-Lavalle LA, Dedicova B (2014a). A milestone in the doubled haploid pathway of cassava (Manihot esculenta Crantz): cellular and molecular assessment of anther-derived structures. Protoplasma 251(1):233-246.
Crossref
 
Perera PIP, Ordo-ez OA, Dedicova B, Ortega PEM (2014b). Reprogramming of cassava (Manihot esculenta) microspore towards sporophytic development. AoB Plants, 6.
Crossref
 
Pooler MR, Scorza R (1997). Irradiation and heat affect peach pollen germination and fertility. HortiScience 32(2):290-291.
 
Restrepo G (2014). Desarrollo del saco embrionario asociado a la formación del embrión de yuca in vitro. Tesis de Grado, Universidad ICESI, Cali. Colombia.
 
Sari N, Abak K, Pitrat M, Rode JC, Dumas de Vaulx R (1994). Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. HortiScience 29(10):1189-1190.
 
Shull GH (1908). The composition of a field of maize. Am. Breed. Assoc. Rep. 4:296-301.
Crossref
 
Shull GH (1909). A pure line methods of corn breeding. Am. Breed. Assoc. Rep. 5: 51-59.
Crossref
 
Vieira LJ, Soares TL, Rossi ML, Alves AAC, Santos FAR, Souza FVD (2012). Viability, production and morphology of pollen grains for different species in the genus Manihot (Euphorbiaceae). Acta Bot. Brasilica, 26 (2): 350-356.
Crossref
 
Vieira LJ, de Santana JRF, Alves AAC, da Silva Ledo CA, Souza VD (2015) Use of aniline blue stain to observing pollen tubes development in different Manihot Mill. species. Afr. J. Agric. Sci. 10(15): 185-1809.
 
Visser T, Oost EH (1981). Pollen and pollination experiments III. The viability of apple and pear as affected by irradiation and storage. Euphytica, 30(1): 65-70.
Crossref
 
Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gotębiowska G (2009). Progress in doubled haploid technology in higher plants. In: Advances in Haploid Production in Higher Plants (Touraev A, Forster BP, Jain SM, eds), pp. 1-34. Heidelberg, Berlin: Springer-Verlag.
Crossref
 
Yan H, Lu L, Alzate A, Ceballos H, Hershey C, Chen S, Li K (2014). Fruit, seed and embryo development of different cassava (Manihot esculenta Crantz) genotypes and embryo rescue. Afr. J. Biotech. 13(14): 1524-1528.
Crossref
 
Yue J, Zou J (2012). Study of radiation effects on upland cotton (Gossypium hirstum L.) pollen grain irradiated by 60Co-γ ray. J. Agric. Sci. 4(7):85-94.

 


APA Buttibwa, M., Kawuki, R. S., Tugume, A. K., Akol, J., Magambo, S. Apio, H., Heberle-Bors, E., Wedzony, M., Ceballos, H., Hershey, C., & Baguma, Y. (2015). In vitro embryo rescue and plant regeneration following self-pollination with irradiated pollen in cassava (Manihot esculenta Crantz). African Journal of Biotechnology , 14(27), 2191-2201.
Chicago Mary Buttibwa, Robert S. Kawuki,  Arthur K. Tugume, Jacinta Akol, Stephen Magambo, Hellen Apio, Erwin Heberle-Bors, Maria Wedzony, Hern&an Ceballos, Clair Hershey and Yona Baguma. "In vitro embryo rescue and plant regeneration following self-pollination with irradiated pollen in cassava (Manihot esculenta Crantz)." African Journal of Biotechnology 14, no. 27 (2015): 2191-2201.
MLA Mary Buttibwa, et al. "In vitro embryo rescue and plant regeneration following self-pollination with irradiated pollen in cassava (Manihot esculenta Crantz)." African Journal of Biotechnology 14.27 (2015): 2191-2201.
   
DOI 10.5897/AJB2015.14577
URL http://academicjournals.org/journal/AJB/article-abstract/C758D4354080

Subscription Form