African Journal of Biotechnology
Subscribe to AJB
Full Name*
Email Address*

Article Number - EEEBB7262236


Vol.16(1), pp. 10-21 , January 2017
DOI: 10.5897/AJB2016.15234
ISSN: 1684-5315



Full Length Research Paper

Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery



Abdelghani Chakhchar*
  • Abdelghani Chakhchar*
  • Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40 000 Marrakech, Maroc.
  • Google Scholar
Mouna Lamaoui
  • Mouna Lamaoui
  • Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40 000 Marrakech, Maroc.
  • Google Scholar
Salama Aissam
  • Salama Aissam
  • Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40 000 Marrakech, Maroc.
  • Google Scholar
Abderrahim Ferradous
  • Abderrahim Ferradous
  • Centre Régional de la Recherche Forestière Marrakech, BP 12360 Ain Itti Ennakhil, Marrakech, Maroc.
  • Google Scholar
Said Wahbi
  • Said Wahbi
  • Laboratoire de Biotechnologie et Physiologie Végétale, Faculté des Sciences Semlalia, Université Cadi Ayyad, 40 000 Marrakech, Maroc.
  • Google Scholar
Abdelhamid EI Mousadik
  • Abdelhamid EI Mousadik
  • Laboratoire de Biotechnologie et Valorisation des Ressources Naturelles, Faculté des Sciences, Université Ibn Zohr, Agadir, Maroc.
  • Google Scholar
Saad Ibnsouda-Koraichi
  • Saad Ibnsouda-Koraichi
  • Laboratoire de Biotechnologie Microbienne, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Maroc.
  • Google Scholar
Abdelkarim Filali-Maltouf
  • Abdelkarim Filali-Maltouf
  • Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V Agdal, Rabat, Maroc.
  • Google Scholar
Cherkaoui El Modafar
  • Cherkaoui El Modafar
  • Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, 40 000 Marrakech, Maroc.
  • Google Scholar







 Received: 22 January 2016  Accepted: 13 May 2016  Published: 04 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Understanding the mechanisms underlying Argania spinosa responses to drought stress is essential for its regeneration and domestication. Toward that end, an integrative study of tolerance responses to drought stress in four A. spinosa ecotypes (2 contrasting coastal ecotypes (Adm and Rab) and 2 contrasting inland ecotypes (Alz and Lks)) have been conducted. Responses to soil drying and re-watering were measured at physiological and biochemical levels. Soil drying resulted in significant increase in leaf concentrations of potassium (K+), calcium (Ca2+) and magnesium (Mg2+) with differential responses between ecotypes. The glutathione-related enzymes: glutathione peroxidase (GP), glutathione reductase (GR) and glutathione S-transferase (GST) showed a significant increase in their enzymatic activity in A. spinosa plants subjected to drought stress. Additionally, a significant increase in thiol protein content in the four ecotypes was recorded, during drought stress. These antioxidant traits responded differently depending on ecotype. However, rapid and significant changes in the studied physiological and biochemical traits were observed during recovery from drought, only after four days. According to the traits having the most discriminating power, the both inland ecotypes, especially Lks ecotype, seem to be potential candidates for regeneration of argan forest and their domestication in arid and semi-arid environments.

Key words: Argania spinosa, drought stress, glutathione enzymes, thiol compounds, recovery.

Anderson JV, Davis DG (2004). Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant. 120:421-433.
Crossref

 

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Crossref

 

Cakmak I (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168:521-530.
Crossref

 

Chakhchar A, Lamaoui M, Ferradous A, Wahbi S, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015a). Differential drought tolerance of four contrasting Argania spinosa ecotypes assessed by enzymatic and non-enzymatic antioxidant. Int. J. Recent Sci. Res. 6:3002-3009.

 

Chakhchar A, Lamaoui M, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015b). Leaf water status, osmoregulation and secondary metabolism as a model for depicting drought tolerance in Argania spinosa. Acta Physiol. Plant. 37:1-16.
Crossref

 

Chakhchar A, Wahbi S, Lamaoui M, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015c). Physiological and biochemical traits of drought tolerance in Argania spinosa. J. Plant Interact. 10:252-261.
Crossref

 

Chaussod R, Adlouni A, Christon R (2005). The argan tree and argan oil in Morocco: towards a deep change in a traditional agroforestry system. Economic and scientific challenges. Cah. Agric. 14:351-356.

 

Deneke SM (2000). Thiol-based antioxidants. Curr. Top. Cell. Regul. 36:151-180.
Crossref

 

Diaz-Barradas MC, Zunzunegui M, Ain-Lhout F, Jauregui J, Boutaleb S, Alvarez-Cansino L, Esquivias MP (2010). Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil 337: 217-231.
Crossref

 

Diaz-Barradas MC, Zunzunegui M, Esquivias MP, Boutaleb S, Valera-Burgos J, Tagma T, Ain-Lhout F (2013). Some secrets of Argania spinosa water economy in a semiarid climate. Nat. Prod. Commun. 8:11-14.

 

Dixon DP, Lapthorn A, Edwards R (2002). Plant glutathione transferases: protein family review. Genome Biol. 3:3004.1-3004.10.

 

Dixon DP, Mcewen AG, Lapthorn AJ, Edwards R (2003). Forced evolution of a herbicide detoxifying glutathione transferase. J. Biol. Chem. 278:23930-23935.
Crossref

 

Dixon DP, Skipsey M, Edwards R (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338-350.
Crossref

 

Edwards EA, Rawsthone S, Mullineaux PM (1990). Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278-284.
Crossref

 

Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007). Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80-82.
Crossref

 

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
Crossref

 

Habig WH, Jacoby WB (1981). Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77:398-405.
Crossref

 

Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione-S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139.

 

Hu Y, Schmidhalter U (1998). Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline conditions. Aust. J. Plant Physiol. 25:591-597.
Crossref

 

Jipp PH, Nepstad DC, Cassel DK, Carvalho C (1998). Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Clim. Change 39:395-412.
Crossref

 

Mahajan S, Tuteja N (2005). Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444:139-158.
Crossref

 

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453-467.
Crossref

 

Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.
Crossref

 

Msanda F, El Aboudi A, Peltier JP (2005). Biodiversity and biogeography of Moroccan argan tree communities. Cah. Agric. 4:357-364.

 

Nagalakshmi N, Prasad MNV (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 160:291-299.
Crossref

 

Nasri M, Zahedi H, Moghadam HRT, Ghooshci F, Paknejad F (2008). Investigation of water stress on macro elements in rapeseed genotypes leaf (Brassica napus). Am. J. Agric. Biol. Sci. 3:669-672.
Crossref

 

Nazar R, Iqbal N, Masood A, Syeed S, Khan SA (2011). Understanding the significance of sulfur in improving salinity tolerance in plants. Environ. Exp. Bot. 70:380-387.
Crossref

 

Noctor G, Gomez L, Vanacker H, Foyer CH (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53:1283-1304.
Crossref

 

Nogués S, Baker NR (2000). Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J. Exp. Bot. 51:1309-1317.
Crossref

 

Parent C, Capelli N, Dat J (2008). Formes réactives de l'oxygène, stress et mort cellulaire chez les plantes. C. R. Biol. 331:255-261.
Crossref

 

Patakas A, Nikolaou N, Zioziou E, Radoglou K, Noitsakis B (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci. 163:361-367.
Crossref

 

Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005). Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids. Plant Sci. 169:403-412.
Crossref

 

Somerville C, Dangl J (2000). Plant biology in 2010. Science 290:2077-2078.
Crossref

 

Szalai G, Kellos T, Galiba G, Kocsy G (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 28:66-80.
Crossref

 

Wang YQ, Shao MA, Shao HB (2010). A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381:9-17.
Crossref

 

Wilkinson S, Welch R, Mayland H, Grunes D (1990). Magnesium in plants: uptake, distribution, function and utilization by man and animals. Metal Ions in Biological Systems: Compendium on Magnesium and Its Role in Biology: Nutrition and Physiology 26:33-56.

 

Wu QS, Srivastava AK, Zou YN (2013). AMF-induced tolerance to drought stress in citrus: A review. Sci. Hortic. 164:77-87.
Crossref

 

Yang Y, Han C, Liu Q, Lin B, Wang J (2008). Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol. Plant. 30:433-440.
Crossref

 

Yuan-Yuan M, Wei-Yi S, Zi-Hui L, Hong-Mei Z, Xiu-Lin G, Hong-Bo S, Fu-Tai N (2009). The dynamic changing of Ca2+ cellular localization in maize leaflets under drought stress. C. R. Biol. 332:351-362.
Crossref

 


APA Chakhchar, A., Lamaoui, M., Aissam, S., Ferradous, A., Wahbi, S., EI Mousadik, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., & El Modafar, C. (2017). Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery. African Journal of Biotechnology , 16(1), 10-21.
Chicago Abdelghani Chakhchar, Mouna Lamaoui, Salama Aissam, Abderrahim Ferradous, Said Wahbi, Abdelhamid EI Mousadik, Saad Ibnsouda-Koraichi, Abdelkarim Filali-Maltouf and Cherkaoui El Modafar. "Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery." African Journal of Biotechnology 16, no. 1 (2017): 10-21.
MLA Abdelghani Chakhchar, et al. "Electrolyte ions and glutathione enzymes as stress markers in Argania spinosa subjected to drought stress and recovery." African Journal of Biotechnology 16.1 (2017): 10-21.
   
DOI 10.5897/AJB2016.15234
URL http://academicjournals.org/journal/AJB/article-abstract/EEEBB7262236

Subscription Form