African Journal of Biochemistry Research
Subscribe to AJBR
Full Name*
Email Address*

Article Number - 7EC9FC565349


Vol.11(7), pp. 34-42 , July 2017
https://doi.org/10.5897/AJBR2017.0941
ISSN: 1996-0778


 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Optimization of amylase production by Aspergillus niger cultivated on yam peels in solid state fermentation using response surface methodology



Samuel Kwatia
  • Samuel Kwatia
  • Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Google Scholar
Victoria Pearl Dzogbefia
  • Victoria Pearl Dzogbefia
  • Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Google Scholar
Isaac William Ofosu
  • Isaac William Ofosu
  • Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Google Scholar







 Received: 17 April 2017  Accepted: 12 June 2017  Published: 31 July 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The study involved the production of amylase from Aspergillus niger grown on yam peels in solid state fermentation. The process parameters: temperature, pH (initial) and incubation time were optimized for maximum amylase production using central composite design (CCD) of response surface methodology (RSM). Temperature was the most significant (p<0.05) parameter and the maximum interaction occurred between temperature and incubation time. The results of the study indicated that amylase is maximized (30.95 U/ml-min) at optimized levels of 49.53°C, 5.95 and 104 h for temperature, pH (initial) and incubation periods, respectively.

 

Key words: Response surface methodology (RSM), Aspergillus niger, central composite design, solid state fermentation (ssf), amylase, production, optimization.

Abdullah R, Shaheen N, Idtedar M, Naz S, Iftikhar T (2014). Optimization of cultural conditions for the production of alpha amylase by Aspergillus niger (BTM -26) in solid state fermentation. Pak. J. Bot. 46(3):1071-1078.

 

Alnour MI, Bashir KI, Elyas O, Elkhidir EE, Ibrahim HM (2015). Optimization of some culture conditions to enhance amylase production using response surface methodology. Int. J. Curr. Microbiol. App. Sci. 4(12):157-165.

 
 

Baş D, Boyacı İH (2007). Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 78(3):836-845.
Crossref

 
 

Bentil JA, Dzogbefia VP, Alemawor F (2015). Enhancement of the nutritive value of cocoa (Theobroma cacao) bean shells for use as feed for animals through a two-stage solid state fermentation with Pleurotus ostreatus and Aspergillus niger. Int. J. Appl. Microbiol Biotechnol. Res. 3:20-30.

 
 

Bhargav S, Panda BP, Ali M, Javed S (2008). Solid-state Fermentation : An Overview. Chem. Biochem. Eng. Q. 22(1):49-70.

 
 

Bhimba BV, Yeswanth S, Naveena BE (2011). Characterization of extracellular amylase enzyme produced by Aspergillus flavus MV5 isolated from mangrove sediment. Indian J. Nat Prod. Resour. 2(2):170-173.

 
 

Dzogbefia VP, Amoke E, Oldham JH, Ellis, WO (2001). Production and use of yeast pectolytic enzymes to aid pineapple juice extraction. Food Biotechnol. 15(1):25-34.
Crossref

 
 

Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G, Pandey A (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 15(2):107-115.
Crossref

 
 

Gowthaman MK, Krishna C, Moo-Young M (2001). Fungal solid state fermentation - an overview. Appl. Mycol. Biotechnol. 1:305-352.
Crossref

 
 

Haasum I, Eriksen SH, Jensen B, Olsen J (1991). Growth and glucoamylase production by the thermophilic fungus Thermomyces lanuginosus in a synthetic medium. Appl. Microbiol. Biotechnol. 34(5):656-660.
Crossref

 
 

Hassaïne O, Zadi - Karam H, Karam N-E (2014). Statistical optimization of lactic acid production by Lactococcus lactis strain, using the central composite experimental design. Afri. J. Biotechnol 13(45):4259-4267.
Crossref

 
 

Hassan H, Karim KA (2015). Optimization of alpha amylase production from rice straw using solid-state fermentation of Bacillus subtilis. Int. J.Sci. Environ.Technol. 4(1):1-16.

 
 

Johnson FS, Obeng AK, Asirifi I (2014). Amylase production by fungi isolated from Cassava processing site. J. Microbiol. Biotechnol. Res. 4(4):23-30.

 
 

Kalaiarasi K, Parvatham R (2013). Optimization of process parameters for α-amylase production under solid-state fermentation by Aspergillus awamori MTCC 9997. J. Sci. Ind. Res. 7(45):5166–5177.

 
 

Lokeswari N (2010). Statistical optimization of experimental variables associated with production of alpha amylases by Bacillus Subtilis using banana agro- residual wastes in solid-state fermentation. Rasayan J. Chem. 3(1):172–178.

 
 

Lowry OH, Rosenbrough OJ, Farr AL, Randall RJ (1951). Protein measurement with Folin Phenol Reagent. J. Biol. Chem. 193:265-275.

 
 

Miller GL (1959). Use of Dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31(3):426-428.
Crossref

 
 

Myers RH, Montgomery DC, Anderson-Cook CM (2009). Response surface methodology: Process and product optimization using designed experiments. (3rd ed.). New Jersey: John Wiley and Sons Inc.

 
 

Nyamful A, Moses E, Ankudey E, Woode M (2014). Solid State Fermentation of Aspergillus niger MENA1E and Rhizopus MENACO11A for glucoamylase production on agricultural residues. Int. J. Sci. Res. Publ. 4(6):5-8.

 
 

Ogbonna AI, Onwuliri FC, Ogbonna CIC (2015). Growth Response and Amylolytic Activity of two Aspergillus species isolated from Artemisia annua L. Plantation Soils. J. Acad. Indus. Res. 3(10):456-462.

 
 

Okoko FJ, Ogbomo O (2010). Amylolytic properties of fungi associated with spoilage in bread. Continental J. Microbiol. 4:1-7.

 
 

Oyedeji FN (2016). Amylolytic properties of fungi associated with spoilage of bread. Acad. Arena. 8(3):62-66.

 
 

Pandey A, Selvakumar P, Soccol CR, Nigam P (1999). Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77(1):149-162.

 
 

Prajapati VS, Trivedi UB, Patel KC (2014). A statistical approach for the production of thermostable and alklophilic alpha-amylase from Bacillus amyloliquefaciens KCP2 under solid-state fermentation. 3 Biotech. 5(39):211-220.

 
 

Reddy NS, Nimmagadda A, Rao KRSS (2003). An overview of the microbial α -amylase family. Afr. J Biotechnol. 2(12):645-648.
Crossref

 
 

Roses RP, Guerra NP (2009). Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J. Microbiol Biotechnol. 25(11):1929-1939.
Crossref

 
 

Ruban P, Sangeetha T, Indira S (2013). Starch waste as a substrate for amylase production by Sago Effluent isolates Bacillus subtilis and Aspergillus niger. American-Eurasian J. Agric. Environ Sci. 13(1):27-31.

 
 

Saranraj P, Stella D (2013). Fungal Amylase- A Review. Intl. J. Microbiol. Res. 4(2):203-211.

 
 

Sethi S, Gupta S (2015). Isolation, characterization and optimization of cultural conditions for amylase production from fungi. J. Glob. Biosci. 4(9):3356-3363.

 
 

Shankar T, Sathees R, Anandapandian KTK (2015). Statistical optimization for ethanol production by Saccharomyces cerevisiae (MTCC 170) using Response Surface Methodology. J. Adv. Med. Life Sci. 2(3):6-10.

 
 

Sindiri MK, Machavarapu M, Vangalapati MV (2013). α -Amylase production and purification using fermented orange peel in solid state fermentation by Aspergillus niger. Indian. J. Appl. Res. 8:49-51.

 
 

Suganthi R, Benazir JF, Santhi R, Kumar R, Hari A, Meenakshi N, Lakshmi R (2011). Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. Int. J. Eng. Sci. Technol. 3(2):1756-1763.

 
 

Sun JL, Liang XH, Zeng J, Li GL, Zhao RX (2011). Response Surface Methodology for the optimization of α-Amylase production by Bacillus subtilis ZJF-1A5. Adv. Mat. Res. 236-238:2323-2326.
Crossref

 
 

Tamilarasan K, Muthukumaran C, Kumar MD (2012). Application of response surface methodology to the optimization of amylase production by Aspergillus oryzae MTCC 1847. Afr. J. Biotechnol. 11(18):4241-4247.
Crossref

 
 

Uguru GC, Akinyanju JA, Sani A (1997). The use of yam peel for growth of locally isolated Aspergillus niger and amylase production. Enzyme Microb. Technol. 21(1):48-51.
Crossref

 
 

Vishnu TS, Soniyamby AR, Praveesh BV, Hema TA (2014). Production and optimization of extracellular amylase from soil receiving kitchen waste isolate Bacillus sp. VS 04. World Appl. Sci. J. 29(7):961-967.

 
 

Xu H, Sun L, Zhao D, Zhang B, Shi Y, Wu Y (2008). Production of α-amylase by Aspergillus oryzae As 3951 in solid state fermentation using spent brewing grains as substrate. J. Sci. Food Agric. 88(6):529-535.
Crossref

 

 


APA Kwatia, S., Dzogbefia, V. P., & Ofosu, I. W. (2017). Optimization of amylase production by Aspergillus niger cultivated on yam peels in solid state fermentation using response surface methodology. African Journal of Biochemistry Research , 11(7), 34-42.
Chicago Samuel Kwatia Victoria Pearl Dzogbefia and Isaac William Ofosu. "Optimization of amylase production by Aspergillus niger cultivated on yam peels in solid state fermentation using response surface methodology." African Journal of Biochemistry Research 11, no. 7 (2017): 34-42.
MLA Samuel Kwatia Victoria Pearl Dzogbefia and Isaac William Ofosu. "Optimization of amylase production by Aspergillus niger cultivated on yam peels in solid state fermentation using response surface methodology." African Journal of Biochemistry Research 11.7 (2017): 34-42.
   
DOI https://doi.org/10.5897/AJBR2017.0941
URL http://academicjournals.org/journal/AJBR/article-abstract/7EC9FC565349

Subscription Form