African Journal of Biochemistry Research
Subscribe to AJBR
Full Name*
Email Address*

Article Number - 840F5F261818


Vol.10(7), pp. 59-69 , November 2016
DOI: 10.5897/AJBR2016.0908
ISSN: 1996-0778



Full Length Research Paper

Effect of pre-harvest chitosan foliar application on growth, yield and chemical composition of Washington navel orange trees grown in two different regions



Ahmed Hussien Hanafy Ahmed
  • Ahmed Hussien Hanafy Ahmed
  • Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
  • Google Scholar
Mohamed Ramadan Aboul-Ella Nesiem
  • Mohamed Ramadan Aboul-Ella Nesiem
  • Plant Physiology Section, Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
  • Google Scholar
Hesham Ali Allam
  • Hesham Ali Allam
  • Post-harvest Research Department, Horticultural Research Institute, Agricultural Research Center (A.R.C.), Giza, Egypt.
  • Google Scholar
Amira Fahmy El-Wakil
  • Amira Fahmy El-Wakil
  • Post-harvest Research Department, Horticultural Research Institute, Agricultural Research Center (A.R.C.), Giza, Egypt.
  • Google Scholar







 Received: 01 October 2016  Accepted: 10 November 2016  Published: 30 November 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The present study was carried out during 2012 and 2013 seasons to study the effect of pre-harvest foliar application of chitosan (a natural beta-1-4-linked glucosamine polymer) at two concentrations 250 and 500 ppm on vegetative tree growth, fruit yield and quality as well as leaves chemical composition of Washington navel orange trees grown under two  locations. As for growth parameters (shoot length, leaves number, and leaves area), the results revealed that chitosan treatments had insignificant effect. Meanwhile, it had a significant improvement on most of the studied fruit characters and leaf chemical constituents, that is, pigments, sugars, total soluble phenols, total free amino acids, endogenous plant hormones “IAA, ABA and GA3” as well as leaf nutritional status “N, P, K, Zn, Ca, B and Si”. Generally, pre-harvest chitosan applications mostly had pronounced positive effects on improving navel orange quality, that is, fruit weight, firmness and T.S.S.%, especially at the rate 500 ppm.

Key words: Citrus, chitosan, growth characters, fruit quality, total chlorophyll, sugar, total soluble sugar (TSS).

Abdel-Mawgoud AMR, Tantawy AS, El-Nemr MA, Sassine YN (2010). Growth and yield responses of strawberry plants to chitosan application. Eur. J. Sci. Res. 39(1):161-168.

 

Bautista- Ba-os S, Hernández-Lauzardo AN, Velázquez-del Valle MG, Hernández-López M, Ait Barka E, Bosquez-Molina E (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25:108-118.
Crossref

 
 

Bautista-Ba-os S, Hernāndez-López M, Bosquez-Molina E, Wilson CL (2003). Effect of chitosan and plant extracts on growth of Colletrichum gloeasporioides, anthracnose levels and quality of papaya fruit. Crop Prot. 22:1087-1092.
Crossref

 
 

Benjakul S, Visessanguan W, Tanaka M, Ishizaki S, Suthidham R, Sungpech O (2000). Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far). J. Sci. Food Agric. 81:102-108.
Crossref

 
 

Bittelli M, Flury M, Campbell GS, Nichols EJ (2001). Reduction of transpiration through foliar application of chitosan. Agric. For. Meteorol. 107(3):167-175.
Crossref

 
 

Cai Z, Kastell A, Smetanska I (2014). Chitosan or yeast extract enhance the accumulation of eight phenolic acids in cell suspension cultures of Malus × domestica Borkh. J. Hortic. Sci. Biol. 89(1):93-99.

 
 

Chakraborty M, Karun A, Mitra A (2009). Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J. Plant Physiol. 166(1):63-71.
Crossref

 
 

Du J, Gemma H, Iwahori S (1997). Effects of chitosan coating on the storage of Peach, Japanese pear and Kiwifruit. J. Jpn. Soc. Hortic. Sci. 66(1):15-22.
Crossref

 
 

Dubois M, Smith F, Gilles KA, Hamiltion JK, Robers PA (1956). Colorimetric method for determination of sugar and related substances. Anal. Chem. 28(3):350-356.
Crossref

 
 

El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010). Chitosan in plant protection. Mar. Drug. 8(4):968-987.
Crossref

 
 

El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA (2013). Response of strawberry plants to foliar spraying of chitosan. Res. J. Agric. Biol. Sci. 9(6):366-372.

 
 

El-Tantawy EM (2009). Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak. J. Biol. Sci. 12(17):1164-1173.
Crossref

 
 

Fang S, Li CF, Shih C (1994). Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 56:136-140.

 
 

Farouk S, Abd El Mohsen RA (2011). Improving growth and yield of cowpea plant by foliar application of chitosan under water stress. J. Plant Prod. Mansoura Univ. 2(10):1341-1358.

 
 

Freepons D (1991). Chitosan, does it have a place in agriculture? Proc. Plant Growth Regul. Soc. Am. pp.11-19.

 
 

Ghoname AA, El-Nemr MA, Abdel-Mawgoud AMR, El-Tohamy WA (2010). Enhancement of sweet pepper crop growth and production by application of biological, organic and nutritional solutions. Res. J. Agric. Biol. Sci. 6(3):349-355.

 
 

Hadwiger LA (2013). Plant science review: Multiple effects of chitosan on plant systems: Solid science or hype. Plant Sci. 208:42-49.
Crossref

 
 

Hanafy Ahmed AH, Harb EM, Higazy MA, Morgan SH (2008). Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. Int. J. Agric. Res. 3(1):1-26.
Crossref

 
 

Harold EP (1985). Evaluation of quality of fruits and vegetables. AVI publication-West Port. Conn. U.S.A. P 428.

 
 

Hirano A, Nagao N (1989). Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopatho gens. Agric. Biol. Chem. 11:3065-3066.

 
 

Hoagland PD, Parris N (1996). Chitosan/pectin laminated films. J. Agric. Food Chem. 44:1915-1919.
Crossref

 
 

Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007). Physiology of citrus fruiting. Braz. J. Plant Physiol. 19(4):333-362.
Crossref

 
 

Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ. Exp. Bot. 66:493-500.
Crossref

 
 

Jabeen N, Ahmad R (2013). The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J. Sci. Food Agric. 93(7):1699-1705.
Crossref

 
 

Khan WM, Prithiviraj B, Smith DL (2003). Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J. Plant Physiol. 160(8):859-863.
Crossref

 
 

King EJ (1951). Micro-Analysis in Medical Biochemistry. JAMA. 147(4):357.
Crossref

 
 

Krezdorn AH (1965). Fruit setting problems in citrus. Proc. Carib. Reg. Amer. Soc. Hortic. Sci. 9:85-92.

 
 

Kulpinsky P, Nishimura SI, Tokura S (1997). Preparation and characterization of functionalized chitosan fibers. Adv. Chitin Sci. 2:334-338.

 
 

Lafontaine PJ, Benhamou N (1996). Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci. Technol. 6(1):111-124.
Crossref

 
 

Lang G, Clausen T, (1989). The use of chitosan in cosmetics. In: Skjak-Braek G, Thorleif Anthosen T, Standford P (Eds.),Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties and Applications. Elsevier Applied Science, London and New York. pp. 139-147

 
 

Liu XD, Nishi N, Tokura S, Sakari N (2001). Chitosan coated cotton fiber: preparation and physical properties. Carbohydr. Polym. 44:233-238.
Crossref

 
 

Lizarraga-Paulín EG, Torres-Pacheco I, Moreno-Martínez E, Miranda-Castro SP (2011). Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. Afr. J. Biotechnol. 10(34):6439-6446.

 
 

Mahdavi B (2013). Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity. Intl. J. Agric. Crop Sci. 5(10):1084-1088.

 
 

Makino Y, Hirata T (1997). Modified atmosphere packaging of fresh produce with a biodegradable laminate chitosan-cellulose and polycaprolactone. Postharvest Biol. Technol. 10(3):247-254.
Crossref

 
 

Mathew R, Sankar PD (2014). Comparison of major secondary metabolites quantified in elicited cell cultures, non-elicited cell cultures, callus cultures and field grown plants of Ocimum. Int. J. Pharm. Pharm. Sci. 6(2):102-106.

 
 

Meng X, Yang L, Kennedy JF, Tian S (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr. Polym. 81:70-75.
Crossref

 
 

Mengel K, Kirkby EA (1979). Principles of Plant Nutrition. 1st Edn., Intern. Potash Institute, Worblaufen – Bern, Swizerland.

 
 

Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M (2012). Effect of foliar application of chitosan on growth and yield in Okra. Aus. J. Crop Sci. 6(5):918-921.

 
 

Moore S, Stein WH (1954). A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211(2):907-913.

 
 

Moran R (1982). Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 69(6):1376-1381.
Crossref

 
 

Morrison TA, Buxton DR (1993). Activity of phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and cinnamyl alcohol dehydrogenase in the maize stalk. Crop Sci. 33(6):1264-1268.
Crossref

 
 

Müller P, Hilgenberg W (1986). Isomers of zeatin and zeatin riboside in club root tissue: evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol. Plant. 66(2):245-250.
Crossref

 
 

Muzarelli RAA (1989). Amphoteric derivatives of chitosan and their biological significance. In: Gudmund, S.-B., Thorleif, A., Paul, S. (Eds.), Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties and Applications. Elsevier Applied Science, London and New York, pp.87-99.

 
 

Nishimura Y (1997). Physiological effects of chitosan administered for long period. Food Style. 21:50-52.

 
 

No HK, Lee KS, Kim ID, Park MJ, Kim SD, Meyers SP (2003). Chitosan treatment affects yield, ascorbic acid content and hardness of soybean sprouts. J. Food Sci. 68(2):680-685.
Crossref

 
 

Ohta K, Taniguchi A, Konishi N, Hosoki T (1999). Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. Hortic. Sci. 34(2):233-234.

 
 

Pennisi E (1992). Sealed in plastic edible film. Sci. News, 141:12-13.
Crossref

 
 

Piper CS (1950). Soil and Plant Analysis, the University of Adelaide Press, Adelaide, Australia. 368p.

 
 

Ramos-Garcia M, Ortega-Centeno S, Hernández-Lauzardo AN, Alia-Tejacal I, Bosquez-Molina E, Bautista-Ba-os S (2009). Response of gladiolus (Gladiolus spp) plants after exposure corms to chitosan and hot water treatments. Sci. Hortic. 121(4):480-484.
Crossref

 
 

Reddy MVB, Belkacemi K, Corcuff R, Castaigne F, Arul J (2000). Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Technol. 20(1):39-51.
Crossref

 
 

Ren H, Endo H, Hayashi T (2001). Antioxidative and antimuta-genic activities and polyphenol content of pesticide-free and organically cultivated green vegetable using water-soluble chitosan as a soil modifier and leaf surface spray. J. Sci. Food Agric. 81:1426-1432.
Crossref

 
 

Roller S, Covill N (1999). The antifungal properties of chitosan in laboratory media in apple juice. Int. J. Food Microbiol. 47:67-77.
Crossref

 
 

Ruiz-García Y, Gómez-Plaza E (2013). Elicitors: A Tool for Improving Fruit Phenolic Content. Agric. 3:33-52.
Crossref

 
 

Sadeghian E (1971). Zeitschrift für pflanzenernährung und bodenkunde. J. Pant Nutr. Soil Sci. 130 (3):193-283.

 
 

Saif Eldeen UM, Shokr MMB, El Shotoury RS (2014). Effect of foliar spray with seaweeds extract and chitosan on earliness and productivity of globe artichoke. J. Plant Prod. Mansoura Univ. 5(7):1197-1207.

 
 

Salachna P, Zawadzińska A (2014). Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J. Ecol. Eng. 15(3):97-102.

 
 

Sandford P (1989). Chitosan: commercial uses and potential applications. In: Skjak-Braek, G., Anthosen, T., Standford, P. (Eds.), Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties and Applications. Elsevier Applied Science, London and New York. pp. 51-69.

 
 

Sandford PA, Hutchings GP (1987). Chitosan—a natural, cationicbiopolymer: commercial applications. In: Yapalma, M. (Ed.), Industrial Polysaccharides Genetic Engineering, Structure/Property Relations and Applications. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, pp. 363-376.

 
 

Sapers GM (1992). Chitosan enhances control of enzymatic browning in apple and pear juice by filtration. J. Food Prot. 57:1192-1193.
Crossref

 
 

Schouwenburg JCh Van, Walinga I (1978). Methods of analysis for plant material. Agric. Univ., Wagenjnen, Netherlands. pp.93.

 
 

Schuffelen AC, Muller A, Van Schouwenburg J Ch (1961). Quick-tests for soil and plant analysis used by small laboratories. Neth. J. Agric. Sci. 9(1):2-16.

 
 

Shahidi F, Kamil JK, Jeon YJ, Kim SK (2001). Antioxidant role of chitosan in a cooked cod (Gadus Morhua) model system. J. Food Lipids 9:57-64.
Crossref

 
 

Shehata SA, Fawzy ZF, El-Ramady HR (2012). Response of cucumber plants to foliar application of chitosan and yeast under greenhouse conditions. Aust. J. Basic Appl. Sci. 6(4):63-71.

 
 

Snedecor GW, and Cochran WG (1972). Statistical Methods. 6th ed., Biometrics 28(4):1153-115.

 
 

Swain T, Hillis WE (1959). The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10(1):63-68.
Crossref

 
 

Uthairatanakij A, Teixeira da Silva JA, Obsuwan K (2007). Chitosan for improving orchid production and quality. Orchid Sci. Biotechnol. 1(1):1-5.

 
 

Villafane VE, Munoze FJE, Torres HR (1989). Flowering, growth and ripening of the orange Washington Valley Citrus, Acts. Agronomica, Universidad-Nacional de Colombia 39(3-4):142-149.

 
 

Wanichpongpan P, Suriyachan K, Chandrkrachang S (2001). Effect of chitosan on the growth of gerbera flower plant (Gerbera jamesonii). In T Uragami, K Kurita, T Fukamizo (Eds.), Chitin and Chitosan in Life Science, Yamaguchi. pp. 198-201.

 
 

Wardowski WF, Nagy S, Grierson W (1985).Fresh citrus fruits. Avi. Publ. Co., Inc. Westport, USA. pp. 79-83.

 

 


APA Ahmed, A. H. H., Nesiem, M. R. A., Allam, H. A., & El-Wakil, A. F. (2016). Effect of pre-harvest chitosan foliar application on growth, yield and chemical composition of Washington navel orange trees grown in two different regions. African Journal of Biochemistry Research , 10(7), 59-69.
Chicago Ahmed Hussien Hanafy Ahmed, Mohamed Ramadan Aboul-Ella Nesiem, Hesham Ali Allam and Amira Fahmy El-Wakil. "Effect of pre-harvest chitosan foliar application on growth, yield and chemical composition of Washington navel orange trees grown in two different regions." African Journal of Biochemistry Research 10, no. 7 (2016): 59-69.
MLA Ahmed Hussien Hanafy Ahmed, et al. "Effect of pre-harvest chitosan foliar application on growth, yield and chemical composition of Washington navel orange trees grown in two different regions." African Journal of Biochemistry Research 10.7 (2016): 59-69.
   
DOI 10.5897/AJBR2016.0908
URL http://academicjournals.org/journal/AJBR/article-abstract/840F5F261818

Subscription Form