African Journal of Biochemistry Research
Subscribe to AJBR
Full Name*
Email Address*

Article Number - AE6B57365995


Vol.11(9), pp. 49-57 , September 2017
DOI: 10.5897/AJBR2017.0926
ISSN: 1996-0778



Full Length Research Paper

Regulatory role of 3-iodothyronamine in tissue-specific fatty acid uptake in mice



Eskandarzade N.
  • Eskandarzade N.
  • Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran.
  • Google Scholar
Sabzevari E.
  • Sabzevari E.
  • Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, 1731, Shiraz 71345, Iran.
  • Google Scholar
Kazemipour N.
  • Kazemipour N.
  • Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, 1731, Shiraz 71345, Iran.
  • Google Scholar
Nazifi S.
  • Nazifi S.
  • Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, 1731, Shiraz 71345, Iran.
  • Google Scholar







 Received: 06 January 2017  Accepted: 29 March 2017  Published: 30 September 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The Lipoprotein lipase (LPL) is the major triacylglycerol  (TAG) hydrolyzing enzyme thus its regulation in different tissues in response to metabolic situations determined lipid consumption or storage. Thyroxine is a well known factor that is able to alter lipoprotein lipase expression. The purpose of this research was to assess the role of 3-iodothyronamine (T1AM) as a thyroid hormone metabolite in regulation of tissue-specific fatty acid uptake in the mice. Eighteen male mice were randomly assigned to control (n=8) and treatment (n=10) groups. The experimental procedure was applied for 7 days and during this period test group received T1AM whereas the control group received dimethyl sulfoxide (DMSO)  and normal saline. In vivo T1AM administration produced significant increase adipose tissue and heart LPL concentrations. There was no significant difference in skeletal muscle LPL concentration between groups. Interestingly high-density lipoprotein (HDL),  concentration exhibited significant decrease in test group versus the control and no significant difference was observed in HDL, non-esterified fatty acids (NEFA)  and triglycerides (TG) concentrations between groups. It was concluded that T1AM specifically modulated fatty acid uptake in different tissues and can potentially serve as a therapeutical anti dyslipidemia agent.

 

Key words: 3-iodothyronamine, lipoprotein lipase, white adipose tissue, skeletal muscle, heart muscle.

Barbier O, Torra IP, Duguay Y, Blanquart C, Fruchart JC, Glineur C, Staels B (2002) Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 22:717-726.
Crossref

 

Bergo M, Wu G, Ruge T, Olivecrona T (2002) Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J. Biol. Chem. 277:11927-11932.
Crossref

 
 

Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoproteinbinding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279-291.
Crossref

 
 

Borensztajn J (1987) Heart and skeletal muscle lipoprotein lipase. In: Borensztajn J (ed) Lipoprotein lipase, Chicago, Evener, pp 133–148.

 
 

Brun LD, Gagne C, Julien P, Tremblay A, Moorjani S, Bouchard C, Lupien PJ (1989) Familial lipoprotein lipase-activity deficiency: study of total body fatness and subcutaneous fat tissue distribution. Metabolism 38:1005-1009.
Crossref

 
 

Burtis CA, Ashwood ER (1994). Tietz textbook of clinical chemistry, 2nd (ed). Philadelphia, W.B. Saunders Company.

 
 

Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparinreleasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J. Biol. Chem. 276:12162-12168.
Crossref

 
 

Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S (2012) Mitochondrial F0F1 -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Br. J. Pharmacol. 166:2331-2347.
Crossref

 
 

Ferreira LD, Pulawa LK, Jensen DR, Eckel RH (2001) Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance. Diabetes 50:1064-1068.
Crossref

 
 

Franssen R, Visser ME, Kuivenhoven JA, Kastelein JJP, Dallinga-Thie GM, Stroes ESG (2008) Role of lipoprotein lipase in triglyceride metabolism: potential therapeutic target. Future Lipidol. 3:385-397.
Crossref

 
 

Ghanian Z, Maleki S, Reiland H, Butz DE, Chiellini G, Assadi-Porter, Ranji M (2014) Optical imaging of mitochondrial redox state in rodent models with 3-iodothyronamine. Exp. Biol. Med. (Maywood) 239:151-158.
Crossref

 
 

Goldberg IJ, Merkel M (2001) Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci. 6:388-405.

 
 

Greenwood MR (1985) The relationship of enzyme activity to feeding behavior in rats: lipoprotein lipase as the metabolic gatekeeper. Int. J. Obes. 9:67-70.

 
 

Guillet-Deniau I, Mieulet V, Le Lay S, Achouri Y, Carre D, Girard J, Foufelle F, et al (2002) Sterol regulatory element binding protein-1c expression and action in rat muscles: insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes 51:1722-1728.
Crossref

 
 

Haviland JA, Reiland H, Butz DE, Tonelli M, Porter WP, Zucchi R, Scanlan TS, et al (2013) NMR based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1AM treatment. Obes 21:2538-2544.
Crossref

 
 

Jensen DR, Schlaepfer IR, Morin CL, Pennington DS, Marcell T, Ammon SM, Gutierrez-Hartmann A, Eckel RH (1997). Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am. J. Physiol. 273:683-689.

 
 

Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, et al (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl. Acad. Sci. USA. 98:7522-7527.
Crossref

 
 

Kim SJ, Nian C, McIntosh CHS (2010) Glucose-dependent insulinotropic polypeptide (GIP) increases human adipocyte lipoprotein lipase (LPL) expression through cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2 (TORC2) mediated trans-activation of the LPL gene. J. Lipid Res. 51:3145-3157.
Crossref

 
 

Klieverik LP, Foppen E, Ackermans MT, Serlie MJ, Sauerwein HP, Scanlan TS, Grandy DK, Fliers E, Kalsbeek A (2009). Central effect of thyronamines on glucose metabolism in rats. J. Endocrinol. 201:377-386.
Crossref

 
 

Kusunoki M, Tsutsumi K, Sato D, Nakamura A, Habu, S, Mori Y, Morishita M, Yonemoto T, Miyata T, Nakaya Y (2011). Activation of lipoprotein lipase increases serum high density lipoprotein 2 cholesterol and enlarges high density lipoprotein 2 particles in rats. Euro J. Pharmacol. 668:337-339.
Crossref

 
 

Mariotti V, Melissari E, Iofrida C, Righi M, Di Russo M, Donzelli R, Saba A, Frascarelli S, Chiellini G, Zucchi R, Pellegrini S (2014). Modulation of gene expression by 3-iodothyronamine: genetic evidence for a lipolytic pattern. PLoS ONE 9:732-744.
Crossref

 
 

Matsumoto M, Ogawa W, Teshigawara K, Inoue H, Miyake K, Sakaue H, Kasuga M (2002). Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signalling pathway in insulininduced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51:1672-1680.
Crossref

 
 

Merkel M, Eckel RH, Goldberg IJ (2002). Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43:1997-2006.
Crossref

 
 

Pappan KL, Pan Z, Kwon G, Marshall CA, Coleman T, Goldberg IJ, McDaniel ML et al (2005). Pancreatic beta-cell lipoprotein lipase independently regulates islet glucose metabolism and normal insulin secretion. J. Biol. Chem. 280:9023-9029.
Crossref

 
 

Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT (2002). Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc. Biol. 22:211-217.
Crossref

 
 

Péterfy M, Ben-Zeev O, Mao HZ, Weissglas-Volkov D, Aouizerat BE, Pullinger CR, Frost PH, Kane JP, Malloy MJ, Reue K, Pajukanta P (2007) Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat. Genet. 39:1483-1487.
Crossref

 
 

Preiss-Landl K, Zimmermann R, Haemmerle G, Zechner R (2002) Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr. Opin. Lipidol. 13:471-481.
Crossref

 
 

Ranganathan G, Resat U, Tripathi P, Kern PA (2007) Regulation of adipose tissue lipoprotein lipase by thyroid hormone. Diabetes 56:666-666.

 
 

Ranganathan G, Unal R, Pokrovskaya ID, Tripathi P, JI Rotter, Goodarzi MO, Kern PA (2012) The lipoprotein lipase (LPL) S447X gain of function variant involves increased mRNA translation. Atherosclerosis 221:143-147.
Crossref

 
 

Regard JB, Kataoka H, Cano DA, Camerer E, Yin L, Zheng YW, Scanlan TS, Hebrok M, Coughlin SR (2007). Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J. Clin. Invest. 117:4034-4043.
Crossref

 
 

Ricart-Jane D, Cejudo-Martin P, Peinado-Onsurbe J, Lopez-Tejero MD, Llobera M (2005). Changes in lipoprotein lipase modulate tissue energy supply during stress. J. Appl. Physiol. 99:1343-1351.
Crossref

 
 

Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16:22-26.
Crossref

 
 

Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET (2004). 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med. 10:638-642.
Crossref

 
 

Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, Jerosch-Herold M, Lima JA, Ding J, Allison MA (2014). Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA study. JACC Cardiovasc Imaging 7:1221-1235.
Crossref

 
 

Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA (2008). Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J. Biol. Chem. 283:13578-13585.
Crossref

 
 

Strauss JG, Frank S, Kratky D, Hämmerle G, Hrzenjak A, Knipping G, von Eckardstein A, Kostner GM, Zechner R (2001). Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J. Biol. Chem. 276:36083-36090.
Crossref

 
 

Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006). Angiopoietin like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. USA. 103:17450-17455.
Crossref

 
 

Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B (2001). Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr. Opin. Lipidol. 12:245–254.
Crossref

 
 

Turcotte LP, Swenberger JR, Zavitz Tucker M, Yee AJ (2001). Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes 50:1389-1396.
Crossref

 
 

Uchiyama T, Tomono S, Sato K, Nakamura T, Kurabayashi M, Okajima F (2015). Angiotensin II reduces lipoprotein lipase expression in visceral adipose tissue via phospholipase C β4 depending on feeding but increases lipoprotein lipase expression in subcutaneous adipose tissue via c-Src. PLoS ONE 10: e0139638.
Crossref

 
 

Voshol PJ, Jong MC, Dahlmans VE, Kratky D, Levak-Frank S, Zechner R, Romijn JA, Havekes LM (2001). In muscle-specific lipoprotein lipase over expressing mice, muscle triglyceride content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake. Diabetes 50:2585-2590.
Crossref

 
 

Wang H, Eckel RH (2009). Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297:271-288.
Crossref

 
 

Wang Z, Li S, Sun L, Fan J, Liu Z (2013). Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors. PLoS One 8:e72146.
Crossref

 
 

Weinstock PH, Bisgaier CL, Aalto-Setälä K, Radner H, Ramakrishnan R, Levak-Frank S, Essenburg AD, Zechner R, Breslow JL (1995). Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J. Clin. Invest. 96:2555-2568.
Crossref

 
 

Welty FK, Alfaddagh A, Elajami TK (2016). Targeting inflammation in metabolic syndrome. Transl. Res. 167:257-280.
Crossref

 
 

Wu G, Zhang L, Gupta J, Olivecrona G, Olivecrona T (2007) A transcription-dependent mechanism, akin to that in adipose tissue, modulates lipoprotein lipase activity in rat heart. Am. J Physiol. Endocrinol. Metab. 293:908-915.
Crossref

 
 

Xie L, Li Y (2017). Lipoprotein Lipase (LPL) polymorphism and the risk of coronary artery disease: A Meta-Analysis. Int. J. Environ. Res. Public Health 14:84-94.
Crossref

 

 


APA Eskandarzade, N., Sabzevari, E., Kazemipour, N., & Nazifi, S. (2017). Regulatory role of 3-iodothyronamine in tissue-specific fatty acid uptake in mice. African Journal of Biochemistry Research , 11(9), 49-57.
Chicago Eskandarzade N., Sabzevari E., Kazemipour N. and Nazifi S.. "Regulatory role of 3-iodothyronamine in tissue-specific fatty acid uptake in mice." African Journal of Biochemistry Research 11, no. 9 (2017): 49-57.
MLA Esk, et al. "Regulatory role of 3-iodothyronamine in tissue-specific fatty acid uptake in mice." African Journal of Biochemistry Research 11.9 (2017): 49-57.
   
DOI 10.5897/AJBR2017.0926
URL http://academicjournals.org/journal/AJBR/article-abstract/AE6B57365995

Subscription Form