African Journal of Food Science
Subscribe to AJFS
Full Name*
Email Address*

Article Number - 104257066097

Vol.11(10), pp. 337-345 , October 2017
DOI: 10.5897/AJFS2017.1627
ISSN: 1996-0794

Full Length Research Paper

In vitro characterization of a vancomycin-resistant strain of Leuconostoc lactis isolated from chicken carcasses and its activity against some foodborne pathogens

Hany M. Yehia
  • Hany M. Yehia
  • Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia.
  • Google Scholar
Samah Ghanem
  • Samah Ghanem
  • Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia.
  • Google Scholar
Tahra Elobeid
  • Tahra Elobeid
  • Human Nutrition Department, College of Health Sciences, Qatar University, P. O. Box 2713, Doha, Qatar.
  • Google Scholar
Sameh Hassan Mosilhey
  • Sameh Hassan Mosilhey
  • Department of Food and Dairy Science and Technology, Faculty of Environmental Agricultural Sciences, Suez Canal University, AlArish, Egypt.
  • Google Scholar
Ioannis N. Savvaidis
  • Ioannis N. Savvaidis
  • Laboratory of Food Chemistry and Food Microbiology, Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece.
  • Google Scholar

 Received: 12 June 2017  Accepted: 17 August 2017  Published: 31 October 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Recently, increasing attention has been paid on Leuconostoc lactis as a promising bioactive organism against food-borne and spoilage bacteria. A total of nine strains, including six different species of the genus Lactobacillus and three species of the genus Leuconostoc, were isolated from chicken carcasses (n=60) collected from wholesale poultry markets located at Al-Riyadh city, Saudi Arabia in 2016 and identified by API 50 CHL assays. L. lactis isolates were resistant to bile salts and vancomycin. The autolytic phenotype of L. lactis was evaluated under starvation conditions in the presence of potassium phosphate buffer. The strains tested showed partial autolysis of approximately 18% after 7 h of starvation at 37°C at the end of the exponential phase. The inhibitory activity of whole-protein extracts of L. lactis against the foodborne bacteria, Listeria monocytogenes, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus was evaluated by renaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The major activity of the total protein appeared as two clear bands on the SDS-PAGE, of approximately 57 and 42 kDa against L. monocytogenes, B. cereus and B. subtilis. No active band was shown against S. aureus and M. luteus.

Key words: Bacteriocins, biopreservation, lactic acid bacteria, pathogens, poultry.


Analytical profile index; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; kDa, kilo Dalton; OD, optical density; IU, international Unit; EDTA, ethylenediaminetetraacetic

acid; TES buffer, Tris EDTA buffer; UV, ultra violet.

Adesokan A, Odetoyinbo BB, Olubamiwa AO (2008). Biopreservative activity of lactic acid bacteria on suya produced from poultry meat. Afr. J. Biotechnol. 7:3799-3803.


Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ (1995). Molecular cloning and nucleotid sequence of the gene encoding major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177:1554-1563.


Chapot-Chartier MP (1996). Les autolysines des bactéries lactiques. Le Lait. 76:91-109.


Cibik R (2010).Biochemical Factors Influencing Autolysis of Leuconostocs in Buffer. Uludag Univ. J. Fac. Vet. Med. 29:37-41.


Cibik R, Chapot-Chartier MP (2004). Characterization of autolytic enzymes in Lactobacillus pentosus. Lett. Appl. Microbiol. 38:459-463.


Coovadia YM, Solwa Z, J.van den Ende (1987). Meningitis caused by vancomycin-resistant Leuconostoc sp. J. Clin. Microbiol. 25:1784-1785.


Coovadia YM, Solwa Z, van den Ende J (1988). Potential pathogenicity of Leuconostoc. Lancet i:306.


Crow VL, Coolbear T, Gopal PK, Martley FG, McKay LL, Riepe H (1995). The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 5:855-875.


FAO/WHO (2002). Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; Ontario, Canada. April 30, May 1.


Fontana L, Brito MB, Diaz JP, Quezada SM, Gil A (2013). Sources, isolation, characterisation and evaluation of probiotics. Br. J. Nutr. 109:35-50.


Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Ga’lvez A (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31(3) 293-310.


Foster S (1995). Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J. Bacteriol. 177(9):5723-5725.


Fuller R (1991). Probiotics in human medicine. Gut 32(4):430-442. Goldin BR, Gorbach SL (1992). Probiotics for humans. In: Fuller, R. (Ed.), Probiotics, the Scientific Basis. Chapman & Hall, London. pp. 355-376.


Holzapfel WH, Geisen R, Schillinger U (1995). Biological preservation of foods with reference to pro¬tective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343-362.


Ibourahema C, Dauphin RD, Jacqueline D, Thonart P (2008). Characterization of lactic acid bacteria isolated from poultry farms in Senegal. Afr. J. Biotechnol. 7(12).


Jay JM (1996). Microorganisms in fresh ground meats: The relative safety of products with low versus high numbers. Meat Sci. 43:59-66.


Kimoto H, Ohmomo S, Okamoto T (2002). Enhancement of bile tolerance in lactococci by Tween 80. J. Appl. Microbiol. 92:41-46.


Lemee R, Rouault A, Guezenec S, Lortal S. (1994) Autolysis of 57 strains of dairy propionibacteria. Le Lait 74.4:241-251.


Lengkey HAW, Adriani L (2009). Uticaj mleka fermentisanog sa Lactobacillus acidophilus I Bifidobacterium spp. na sadržaj mlecne i sircetne kiseline i Staphylococcus aureus i Pseudomonas aeruginosa. Biotechnol. Anim. Husb. 25(7):19-724.


Lepeuple AS, Van Gemert E, Chapot-Chartier MP (1998b). Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage encoded enzyme. Appl. Environ. Microb. 65(41):42-4148.


Lin WH, Yu B, Jang SH, Tsen HY (2007) . Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe 13:107-113.


Lortal FS. Valence C, Bizet JL (1997). Maubois. Electrophoretic pattern of peptidoglycan hydrolases, a new tool for bacterial species identification: application to 10 Lactobacillus species. Res. Microbiol. 148:461-474.


Lortal S, Boyaval P, Van Heijenoort J (1989). Influence de plusieurs facteurs sur l'autolyse de Lactobacillus helveticus CNRZ 414. Le Lait 69.3:223-231.


Mou L, Sullivan JJ, Jago GR (1976). Autolysis of Streptococcus cremoris. J. Dairy Res. 43(2):275-282.


NCCLS (National Committee for Clinical Laboratory Standards) (2002). Performance standards for antimicrobial susceptibility testing: Twelfth informational supplemen NCCLS document M100- S12. PA, USA.


Ogunshe AAO (2008). Bioinhbition of diarrhogenic Gram-positive bacterial pathogens by potential indigenous probiotics in industrial infant weaning food. Asian Pac. J. Trop. Med. 1(2):7-11.


Ostlie H, Vegarud G, Langsrud T (1995a). Autolysis of lactococci: detection of lytic enzymes by polyacrylamide gel electrophoresis and characterization in buffer systems. Appl. Environ. Microbiol. 61(10):3598-3603.


Ostlie H, Vegarud G,Langsrud T(1995b). Autolysis of dairy propionibacteria in buffer systems. J. Dairy Sci. 78(11):2315-2325.


Potvin C, Leclerc D, Tremblay G, Asselin A, Bellemare G, Cloning (1988.) Sequencing and expression of a Bacillus bacteriolytic enzyme in Escherichia coli. Mol. Gen. Genet. 214(2):241-248.


Sandholm E, Sarimo SS (1981) Autolysis of Streptococcus thermophilus. FEMS Microbiol. Lett. 11:125-129.


Savage DC (1992). Gastrointestinal microbial ecology: possible modes of action of direct-fed microbials in animal production - a review of the literature. In: Direct-Fed Microbials in Animal Production. National Feed Ingredients Association, Iowa. pp. 11-81.


Stiles MEN (1996). Biopreservation by lactic acid bacteria. Anton Leeuw. Int. J. G 70:331-345.


Valence F,Lortal S (1995). Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl. Environ. Microbiol. 61(9):3391-3399.


Walker DK, Gilliland SE (1993).Relationships among bile tolerance, bile salt deconjugation and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 76(4):956-961.


Yehia HM, AL-Dagal MM (2014). Prevalence of Campylobacter jejuni in chicken produced by major poultry companies in Saudi Arabia. Int. J Food Contam 1:2.


Zhang W, Liu M, Dai X (2013). Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Braz. J. Microbiol. 44(3):3685-691.



APA Yehia, H. M., Ghanem, S., Elobeid, T., Mosilhey, S. H., & Savvaidis, I. N., (2017). In vitro characterization of a vancomycin-resistant strain of Leuconostoc lactis isolated from chicken carcasses and its activity against some foodborne pathogens. African Journal of Food Science, 11(10), 337-345.
Chicago Hany M. Yehia, Samah Ghanem, Tahra Elobeid, Sameh Hassan Mosilhey and Ioannis N. Savvaidis,. "In vitro characterization of a vancomycin-resistant strain of Leuconostoc lactis isolated from chicken carcasses and its activity against some foodborne pathogens." African Journal of Food Science 11, no. 10 (2017): 337-345.
MLA Hany M. Yehia, et al. "In vitro characterization of a vancomycin-resistant strain of Leuconostoc lactis isolated from chicken carcasses and its activity against some foodborne pathogens." African Journal of Food Science 11.10 (2017): 337-345.
DOI 10.5897/AJFS2017.1627

Subscription Form