African Journal of Mathematics and Computer Science Research
Subscribe to AJMCSR
Full Name*
Email Address*

Article Number - DD9FE1E48480


Vol.7(7), pp. 79-85 , November 2014
DOI: 10.5897/AJMCSR2014.0542
ISSN: 2006-9731



Full Length Research Paper

Multivalent harmonic uniformly convex functions



R. M. EL-Ashwah
  • R. M. EL-Ashwah
  • Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
  • Google Scholar
M. K. Aouf
  • M. K. Aouf
  • Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
  • Google Scholar
F. M. Abdulkarem
  • F. M. Abdulkarem
  • Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
  • Google Scholar







 Received: 10 March 2014  Accepted: 13 October 2014  Published: 06 November 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


In this paper, several properties of the multivalent harmonic uniformly convex classes    and  were investigated. Coefficient bounds, distortion theorem, extreme points, convolution condition, convex combinations and integral operator for these classes were obtained.

 

Key words: Harmonic, multivalent functions, convex, convolution.

Ahuja OP, Jahangiri JM (2001). Multivalent harmonic star like functions. Ann. Univ. Mariae Curie-Sklodowska 55(1):1-13.
 
Ahuja OP, Jahangiri JM (2002). On a linear combination of classes of multivalently harmonic functions, Kyungpook. Math. J. 42(1):61-70.
 
Ahuja OP, Jahangiri JM (2003). Multivalent harmonic starlike functions with missing coefficients. Math. Sci. Res. J. 7(9):347-352.
 
Al-Shaqsi K, Darus M (2008). On harmonic functions defined by derivative operator. J. Ineq. Appl. Art. ID 263413.
 
Bshouty D, Hengartner W, Naghibi-Beidokhti M (1999). P-valent harmonic mapping with finite Blaschke dilatation. Ann. Univ. Mariae Curie-Sklodowska. 53(2):9-26.
 
Chandrashekar R, Murugusundaramoorthy G, Lee SK, Subramanian KG (2009). A class of complex-valued harmonic functions defined by Dziok-Srivastava operator. Chamchuri J. Math. 1(2):31-42.
 
Clunie J, Sheil-Small T (1984). Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9:3-25.
Crossref
 
Guney HO, Ahuja OP (2006). Inequalities involving multipliers for multivalent harmonic functions. J. Inequal. Pure Appl. Math. Art. 7(5):1-9.
 
Jahangiri JM (1999). Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 235:470-477.
Crossref
 
Kanas S, Srivastava HM (2000). Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 9(2):121--132.
Crossref
 
Kanas S, Wisniowska A (1999). Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105(1-2):327--336.
Crossref
 
Kim YC, Jahangiri JM, Choi JH (2002). Certain convex harmonic functions. Int. J. Math. Sci. 29(8):459-465.
Crossref
 
Murugusundaramoorthy G (2003). A class of Ruscheweyh-type harmonic univalent functions with varying arguments. Southwest J. Pure Appl. Math. 2:90-95.
 
Murugusundaramoorthy G, Vijaya K, Raina RK (2009). A subclass of harmonic functions with varying arguments defined by Dziok-srivastava operator. Archivum Math. 45:37-46.
 
Rosy T, Stephen BA, Subramanian KG, Jahangiri JM (2001). Goodman-Ronning-type harmonic univalent functions. Kyungpook Math. J. 41:45-54.
 
Saitoh H, Owa S, Sekine T, Nunokawa M, Yamakawa R (1992). An application of certain integral operator. Appl. Math. Lett. 5:21-24.
Crossref

 


APA EL-Ashwah, R. M., Aouf, M. K., & Abdulkarem, F. M. (2014). Multivalent harmonic uniformly convex functions. African Journal of Mathematics and Computer Science Research, 7(7), 79-85.
Chicago R. M. EL-Ashwah, M. K. Aouf and F. M. Abdulkarem. "Multivalent harmonic uniformly convex functions." African Journal of Mathematics and Computer Science Research 7, no. 7 (2014): 79-85.
MLA R. M. EL-Ashwah, M. K. Aouf and F. M. Abdulkarem. "Multivalent harmonic uniformly convex functions." African Journal of Mathematics and Computer Science Research 7.7 (2014): 79-85.
   
DOI 10.5897/AJMCSR2014.0542
URL http://academicjournals.org/journal/AJMCSR/article-abstract/DD9FE1E48480

Subscription Form