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Location of emergency medical services such as an ambulance in urban locations has been under 
study for a long time. Several approaches have been employed in solving this very sensitive location 
problem. In this paper, a case study of the ambulance location problem in an urban setting as the 
Kumasi metropolis in Ghana is solved. The Non-Linear Maximum Expected Covering Location Problem 
(MEXCLP) implemented by Saydam and Aytug (2003) was used. To solve the problem, Genetic 
Algorithms (GA) that uses random key coding was implemented. A formula for renormalization has 
been introduced. Real route distances were used for computation and statistical deviation was 
introduced in the selection of our optimal route. 
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INTRODUCTION 
 
Emergency Medical Service (EMS) is a service that 
provides out-of-hospital acute care and provides 
transport to place of definitive care, to patients with 
illnesses and injuries, which the patient believes, 
constitute a medical emergency. The most common and 
recognized EMS type is an ambulance organization (US 
DOT, 1995). There has been significant evolution in the 
development of ambulance location. In Ghana, cases 
requiring emergency medical services have been left 
unattended to over a long period. Many accident cases 
recorded over the years, suggest the country has left this 
very important sector of health in a neglected state. Until 
2004, the country had no working pre-hospital unit and 
this accounted for several avoidable deaths. The May 9 
stadium disaster that claimed one hundred and twenty-
six lives at the Ohene Djan Sports Stadium (formerly 
Accra Sports Stadium) is clear evidence of the failure to 
respond to emergencies in the country. 
 
 
Related works 
 
A lot of location models  have  been  employed  in  health  
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care. Covering models are the most widely used location 
models for solving the emergency facility location 
problem. The objective here is to provide coverage to the 
demand points. A demand point is considered as covered 
only if a facility is available to service the demand point 
within a coverage distance limit which is normally 
referred to as a critical distance. At the heart of the set 
covering and maximal covering models is the notion of 
coverage. 

Toregas et al. (1971) formulated the Set-Covering 
Location Problem (SCLP) to minimize the number of 
stations such that all demand points are covered. An 
important step after this formulation was the development 
of the Maximum Covering Location Problem (MCLP) by 
Church and ReVelle (1974). The main objective of the 
MCLP is to choose the location of facilities to maximize 
the population that has a facility within a maximum travel 
distance (or time). Thus, a population is considered 
covered if it is within a predefined service distance (or 
time) from at least one of existing facilities. 

Daskin (1983), proposed the Maximal Expected 
Covering Location Problem (MEXCLP) as extension to 
the (MCLP) formulated by Church and ReVelle (Church 
and Revelle, 1974; Chiyoshi et al., 2003). This was 
mainly to account for possibility of server unavailability 
due to a congested system. The interest here is for 
demand    to   be   covered  by  a  located  facility  that  is 



 
 
 
 
available when a demand for service arises. The 
approach attempted to maximize expected coverage 
given that the servers are busy and unavailable with a 
calculable system-wide probability (p), (Daskin, 1982). 
ReVelle and Hogan (1989a) later developed the 
Maximum Availability Location Problem (MALP) which 
distributed a fixed number of servers to maximize the 
population covered with a server available within the 
response-time standard with reliability. They presented 
two versions of MALP, one with a system wide busy 
probability which is somewhat similar to MEXCLP, and 
the other version computed the local busy fractions for 
servers assuming that the immediate area of interest is 
isolated from the rest of the region (Aytug and Saydam, 
2002). 

Saydam et al. (1994), compared the accuracy of the 
predicted expected coverage of adjusted MEXCLP and 
found that MEXCLP provides optimal or near-optimal 
sets of locations, but, that there can be a significant over- 
or underestimation of coverage. 

Batta et al. (1989) suggested adjustments to the 
MEXCLP to improve the accuracy of the expected 
coverage predicted by it. They proposed a two step 
heuristic that utilizes Larson's hypercube optimization 
procedure (Larson, 1974). Unlike MCLP, MEXCLP can 
locate multiple units (ambulances) at the same station 
(facility node), limited by the capacity of the station. 
Given that ambulances are typically busy at least 30% of 
the time, MEXCLP is considerably more realistic than 
MCLP. 

Saydam and McKnew (1985) studied the same 
problem and offered a separable programming 
formulation that they found could solve larger instances 
to optimality than Daskin's formulation (Daskin, 1983). 
Widner et al. (2007) noted that an accurate model for 
EMS can be quite complex since elements of uncertainty 
appear in time, location and amount of required services 
with particular dispatching policies. 

Chuang and Lin (2007), proposed a new MEXCLP-DS 
model which combined MEXCLP with DSM to solve a 
double standard coverage ambulance location problem 
under a probabilistic situation, to provide sufficient coverage 
of EMS once an ambulance is dispatched to a call. The 
proposed MEXCLP-DS model presented the benefits of 
relocation of emergence vehicles. At the end of their 
research, their results clearly demonstrated that not only did 
their model satisfy 100% of demands within 8 min standard 
arriving time at (5.3 km coverage distance), but it also 
achieved 95% of demands within 5 min standard arriving 
time at (3.3 km coverage distance) while locating only 4 
facilities. 

Aytug and Saydam (2003) compared the performance 
of Genetic Algorithms (GAs) on large-scale maximum 
expected coverage problems to other heuristic 
approaches. They focused their attention on a particular 
formulation with a nonlinear objective function that was 
optimized over a convex set. They went on to compare 
the solutions obtained by the best Genetic Algorithm (GA) to 
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that of Daskin's heuristic and the optimal or best solutions 
obtained by solving the corresponding Integer Linear 
Programming (ILP) problems. 
 
 
Simple genetic algorithm 
 
GA is a computational method inspired by evolution. The 
algorithm encodes a potential solution to a specific 
problem on a simple chromosome-like data structure and 
applies recombination operators to these structures so as to 
preserve critical information. GA are often viewed as 
function optimizer, although the range of problems to which 
GAs have been applied is quite broad. It was first proposed 
by John Holland in 1975, (Whitley, 1994) as an adaptive 
search procedure. It is primarily inspired by Darwin's theory 
of 'the survival of the fittest'. An implementation of a GA 
begins with a population of chromosomes (solutions). One 
then evaluates these structures and allocates reproductive 
opportunities in such a way that those chromosomes which 
represent a better solution to the target problem are 
given more chances to "reproduce" than those 
chromosomes which are weak solutions. 

The "goodness" of a solution is typically determined by 
the relative performance of other solutions of the current 
population (Whitley, 1994). A simple GA is as follows: 
 
(i) Produce an initial population of individuals of the 
population. 
(ii) Evaluate the fitness of all individuals. 
(iii) WHILE (termination condition not met). 
(iv) SELECT fitter individuals for reproduction. 
(v) RECOMBINE between individuals to obtain offsprings 
(vi) MUTATE offsprings. 
(vii) Evaluate the fitness of the modified offsprings. 
(viii) Generate a new population. 
(ix) END WHILE. 
 
GA’s have been used to successfully solve a number of 
facility location problems. Chuang and Lin (2007) used 
GA in solving their MEXCLP-DS model and obtained very 
promising results. Aytug and Saydam (2003), solved a 
large-scale MEXCLP with a GA implementation. Location of 
EMS in Ghana and the Kumasi metropolis has not been 
done with any known location model. They have been 
intuitively attached to “fire stations” without any know 
mathematical or facility location model. This paper will seek 
to optimally place a limited number of ambulances in 
Kumasi submetro centres in order to optimally cover 
emergency medical cases while achieving coverage of 
over 95% of the generated demand. 
 
 
Background study 
 
Kumasi is the capital city of the Ashanti Region, a very 
important and historical centre for Ghana. It is located 
about 250 km (by  road)  northwest  of  Accra.  Kumasi  is 
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approximately 300 miles north of the equator and 100 
miles north of the Gulf of Guinea. It is the second largest 
city of Ghana with a population of 1,517,000. The 
metropolis is made up of 119 submetros. 

There are five ambulances currently located in Ashanti 
Region, and one is in the Kumasi metropolis. The one in 
Kumasi is located at the Komfo Anokye Teaching 
Hospital (KATH) and the other four ambulances are 
located at Mamponten, Ejisu, Konongo and Ahwia 
Nkwanta. All except the KATH and Ahwia Nkwanta 
services are located at “fire stations”. Cases handled by 
the Regional Ambulance Service (RAS) range from 
Gynaecology to road accidents. 

The RAS is housed in a separate building at the KATH 
polyclinic. The EMTs here run two shifts; day and night. 
Communication is the key to running of the ambulance 
service. 
 
 
METHODOLOGY 
 
The MEXCLP was formulated by Daskin (1982, 1983). The aim is 
to locate M ambulances at possible facility sites on a network so as 
to maximize the demand expected to be covered within an 
endogenously determined coverage radius, r, when the probability 
of each vehicle being busy is (p). Critical to Daskin’s formulation is 
the fact that if M units must cover a point geographically, and if 
each unit is busy with probability p, then the probability that the 
point is covered by at least one unit is 1-pm. Daskin (1983), 
maximized the expected coverage as follows: 
 
Maximize             (1) 

 
Subject to: 
 

             (2) 

 
                                          (3) 

 
              (4) 

 
                           (5) 

 
where 
M = Maximum number of ambulance facilities to be located, n = 
Number of nodes or submetros, xi =Number of ambulances located 
at facility node I, hj = Demand generated at node j. 
 

 
 
The objective (1) is non-linear and it maximizes the expected 
number of demands that can be covered. Constraint (2) computes 
the number of times demand node j is covered and relates the 
decision variables yij to the first set of decision variables, xi. 
Constraint (3)  specifies  the  maximum  number  of  facilities  to  be 

 
 
 
 
located on the network. Constraint (4) allows multiple ambulance 
units to be located at any candidate node. Finally, we note that the 
number of facilities capable of covering node j is given by aijxi. In 
this paper, a reformulated variant of the MEXCLP due to Saydam 
and McKnew (1985). 

Let yj = The number of times demand node j is covered, n = 
number of demand nodes,  the expected 

coverage for each of he demand nodes for all demand nodes. 
 
The nonlinear equivalent form of (1) can then be formulated as: 
 
Maximize     (6) 

 
Subject to: 
 

     (7) 

 
      (8) 

 
     (9) 

 
     (10) 

 
Aytug and Saydam (2003), state that, although the two formulations 
1 and 6 are theoretically identical; the reformulation of Daskin's 
MEXCLP due to Saydam and McKnew (1985) makes its 
implementation easier with GA. 
 
 
Solving the model 
 
We shall solve the proposed ambulance location in Kumasi 
metropolis by means of a GA that employs random key coding as 
proposed in Aytug and Saydam (2003), however, we introduced a 
formula for renormalization of the random key codes. GAs are 
known to work very well on unconstrained optimization problems 
without any further engineering on its search operators (Aytug and 
Saydam, 2002). When the search space is constrained the regular 
search operators like crossover and mutation do not guarantee 
feasible solutions and thus there is the need to then engineer the 
genetic operators in order to guarantee feasible solutions 
(Cleveland et al., 1989) or one needs to impose penalties on 
infeasible solutions to make their survival less likely (Anderson and 
Ferris, 1994; Michalewicz, 1996; Palmer et al., 1989). 
 
 
Genetic algorithm design using random key coding 
 
In designing any GA there are important steps and factors one has 
to consider. As described by Aytug and Saydam (2002), five key 
factors or issues are considered when designing a GA. 
 
(I) Selecting an appropriate representation of solution space 
(II) Select an effective crossover operator 
(III) Select an effective mutation operator 
(IV) Select a feasible initialization 
(V) Select appropriate crossover and mutation rates that will create 
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Table 1. Unnormalized table of random numbers. 
 

0.7803, 0.2348 0.5470, 0.9294 0.6443, 0.2077 0.3111, 0.5949 
 
 
 

Table 2.Normalized table of random numbers. 
 

0.1194, 0.0359 0.0837, 0.1423 0.0986, 0.0318 0.0476, 0.0911 
 
 
 
the best answer when the algorithm stops. 
 
 
Solution representation 
 
Unlike the usual facility location problem where only one facility is 
located at a candidate site, the present problem requires the 
possibility of more than one facility (ambulance) be located at a 
candidate site. A solution or chromosome consists of  bits or 

alleles. This breaks down into n blocks representing the n vertices 
or nodes in the network with each block containing k random 
numbers. The argument k represents the number of bits (alleles) in 
each of the n block of our solution and also gives information on the 
maximum number of ambulance units U that can be placed at a 
candidate node, that is . Thus 2k is the 

smallest integer greater than the number of ambulances allowed at 
one node. Argument U actually takes on the binary format such that 
the number of ambulances (U) at any one node can be calculated 
from the formula: 
 

        (11) 

 
where ak =0,1 
 
 
Random key code representation scheme 
 
The chromosome representation of the genetic algorithm used in 
this work is based on random key coding. A solution is represented 
by a random key coded string s of length  where si is 

assigned a uniform random value. The number of ambulances in a 
given node is determined from k uniform random numbers and their 
relative values. k is selected such that, 2k is the smallest integer 
greater than the maximum number of ambulances allowed at one 
node. 

The formula is verified in the illustration below. Aytug and 
Saydam (2002), provided for each string the normalization 
constraint 
 

            (12) 

 
so as to eliminate the potential that a parent with high random 
numbers can eliminate the solution from a parent with very low 
random numbers. Equation (12) is same as the constraint Equation 
8 in problem P2. In applying Equation (12), Aytug and Saydam 
(2002) state that random initialization requires creating feasible 
solutions randomly. Random key coding requires no feasibility 
check since the decoding algorithm guarantees feasibility. 

In this paper we provide a renormalization formula that can be 
applied to non-feasible random key codes and convert them to the 
feasible ones that satisfy Equation (12). The formulation is given by 

 

        (13) 

 
 
Illustration 
 
For example if we have say a network with nodes n = 4 and the 
number of bits at each node (block) is k = 2 the solution space in 
the example is . This implies we have chosen 

k = 2 and , what it means is that we are allowing a 

maximum of ambulances to be located at any 

candidate site. The data values (alleles) for the elements of the 
solution space are of the set 
 

 
 
and they are represented by uniform random numbers. Choosing 
eight random numbers uniformly we may get the random numbers 
as shown in Table 1. 

We use the condition  to 

check for normality with M = 5. If 

which is so in our case for the 

above uniformly generated random numbers, then we normalize 
the Si values. We thus normalize the Si values as follows: 
 

        (14) 

 
Once Equation 14 is satisfied, we finally do an element wise 

division of the set with to obtain the 

individual random numbers that have been completely normalized. 
Thus the elements in Table 1 are normalized to obtain normalized 
Si values in Table 2. Thus the Table 2 satisfies condition (14). 
 
 
Generation of binary code 
 
The random key code is decoded to obtain a binary coded 
chromosome solution. The decoding process starts with assigning 
integer indices to the corresponding random number value. From 
left to right we assign indices from 0 to to the random 

numbers. We then map the random numbers onto the indices. 
Retaining the mapping we arrange the random numbers in order of 
decreasing magnitude so that the index of the largest random 
number is in first position  on  the  permuted  list  of  indices  l.  Now
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Table 3. Binary and decimal representation. 
 

Binary representation 
1 0 0 1 1 0 0 0 

 

Decimal representation 
2 1 2 0 

 
 
 

Table 4. Two parents p1 and p2. 
 
p1 0.1194, 0.0359 0.0837, 0.1423 0.0986, 0.0318 0.0476 , 0.0911 
p2 0.0134, 0.1010 0.0182, 0.1781 0.1315, 0.0976 0.0916, 0.1138 

 
 
 
based on the newly ordered arrangement of the indices we use the 

formula to calculate the 

corresponding decimal value at the index element  at the ith 

position and sum up until the values so far encountered is equal 

to our M. Once we obtain our M all other locations without entries 
are set to 0. While retaining the mapping, the permuted indices list 
is arranged back to the original index list. The permuted binary list 
is now put into a binary set of n blocks each of k binary elements. 
For each block of k binary elements we use the formula of Equation 
(11) to convert the k binary elements into integer values to reflect 
the number of ambulances to be placed at each of the n candidate 
facility sites. 

From Table 2 of normalized feasible solutions above, ranking the 
bits based on the random numbers, 0.1423 at position 3 happens 
to be the highest, followed by 0.1194 at position 0, 0.0986 in 
position 4 follows and this continues until we obtain the set of 
unordered integer indices (3, 0, 4, 7, 2, 6, 1 and 5). Now setting bit 
3 to 1 is equivalent to placing 1 ambulance on node 2, setting bit 0 
to 1 is equivalent to placing 2 ambulances on node 1 and setting bit 
4 to 1 is equivalent to placing 2 ambulances on node 3. Since all of 
M = 5 ambulances have been assigned, bits (7, 2, 6, 1 and 5) are 
set to 0. Thus the example in Table 2 gives the binary 
representation in Table 3. 
 
 
GA operators 
 
As with every GA, setting the genetic operators is important in the 
solutions one would obtain. Aytug and Koehler (2007) suggested 
that in the worst case a large population size and a high mutation 
rate regardless of the crossover rate reduces the number of 
iterations required before the optimal is seen for a given probability. 
A crossover rate of 0.7 and mutation rates of 0.03 yielded the best 
results regardless of the crossover and initialization types 
employed. 
 
 
Selection 
 
Our members of the crossover pool are based on a selection rate, 
Xrate, which randomly selects a fraction of the initial population size 
which will survive the next step of mating or crossover. The 
population to keep for mating, Nkeep = Xrate x Ninit_pop, where Ninit pop 
is the number of members of the initial population. We are using a 
selection rate, Xrate = 0:75. Thus, if the initial population were to 
100 we select Nkeep = 0.75 x 100 = 75 for mating. The seventy-five 
will be selected according to the magnitude of their objective 
function values. 

Crossover 
 
Crossover as a genetic operator is used to generate offsprings and 
solutions of a chromosome from parent solutions such that some 
traits or data information in two parents are exchanged to obtain 
offsprings. It is analogous to reproduction and biological mating or 
fusion. Many crossover types exist. To effect crossover we define 
location points(s) among the alleles in the chromosome after which 
alleles of two chromosomes will be exchanged. The traditional one-
point crossover implemented in Aytug and Saydam (2002) is the 
one employed in this work. After this, we start at the top of the list 
and pair the chromosomes two at a time until Nkeep chromosomes 
are selected for mating. Here we pair odd rows with even rows. 
Two parents p1 and p2 are illustrated in Table 4. 

p1 and p2 are two random key coded parents from the set of 
parent chromosomes Nkeep. We now proceed with a crossover rate 
of cXrate = 0.70 as suggested in [22] to obtain a crossover point with 
the formula Cp= , where S is the length of our 

chromosome. This means our crossover point is then Cp =6 and the 
corresponding offsprings are obtained in Tables 5 to 7. 
 
 
Mutation 
 
Mutation is a genetic operator that alters one or more gene values 
in a chromosome from its initial state. This can result in entirely new 
gene values being added to the gene pool. Mutation is an important 
part of the genetic search as it helps prevent the population from 
getting stuck in a local optima and find a new neighborhood with a 
potentially more promising solution. Mutation occurs according to a 
user-defined mutation probability. As suggested by Aytug and 
Saydam (2002), we use a mutation rate, m=0.03. We obtain the 
number of mutations as: 
 

No. of mutations =  

 
where Npop is the number of members in the population and Nbits is 
the number of bits of each member. The bits are then mutated base 
on the above. 
 
 
GA for location of the ambulance 
 
The GA used here is one implemented in Aytug and Saydam 
(2002) and based on Bean's work (Bean, 1994). In this 
representation, each bit is encoded with a random number 
(encoding). The genetic operator and function evaluator decodes 
the   bits   so   as   to  guarantee  feasibility.  Based  on  parameters
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Table 5. Corresponding offsprings. 
 

O1 0.1194, 0.0359 0.0837, 0.1423 0.0986, 0.0318 0.0916, 0.1138 
O2 0.0134, 0.1010 0.0182, 0.1781 0.1315, 0.0976 0.0476, 0.0911 

 
 
 

Table 6. The corresponding binary solutions. 
 
bO1 = 1 1 0 1 0 0 0 1 
bO2 = 0 1 0 1 1 1 0 0 

 
 
 

Table 7. The offspring integer solutions for the facilities 
to be located. 
 

iO1 = 3 1 0 1 
iO2 = 1 1 3 0 

 
 
 
obtained and motivation from the simple GA, the algorithm for our 
program is as follows: 
 
(i) Load_Parameters() 
(ii) Create_Boolean_Matrix of aij's 
(iii) Initialize population For i=1:no_of_runs current population 
(iv) doNormalisation() 
(v) Decode random key coded solution into binary code solution() 
(vi) Evaluate FITNESS of the solutions 
(vii) Store GLOBAL BEST solution For j=1:no_of_generations 
(viii) SELECT Fitter Individuals from the population for Reproduction 
(ix) doCROSSOVER to get offspring solutions 
(x) doMUTATION on offspring solutions 
(xi) Normalise and decode 
(xii) Evaluate FITNESS of offspring solutions 
(xiii) Obtain new generatioin of population from the current population 
and offsprings 
(xiv) End 
(xv) Store new generation in current population 
(xvi) End 
 
 
Experimental setup 
 
Our computational study involves solving the problem defined in 
problem P2 of related work. The application instance is fully defined by 
the number of nodes, the distance matrix, the coverage radius of the 
servers, the number of servers, distribution of calls among the nodes, 
and the system wide probability of a server being busy when it is called 
to service. With our implementation, uniform random solution set is 
created based on the number of nodes on the network and the number 
of ambulances to be located. The network consists of 54 nodes among 
which ambulances are going to be located. The 54 nodes were selected 
based on a Geographic Information Systems (GIS) buffering technique. 
The edge matrix used in the work is based on real road distances and 
not Euclidean distances as used by Aytug and Saydam (2002) in their 
model. This work is different in that the distance matrix is obtained from 
the All-Pairs Shortest Path (APSP) of the edge distances between all 
nodes on the network using the Floyd-Warshall Algorithm. 
 
 
Parameters for computational work 
 
Average response time (ART) 
 
One important parameter in EMS circles  is  the  average  response 

time which is defined as the time interval between the time a call is  
received and the time an ambulance arrives at the scene. Daily 
data was obtained from RAS over a 5-month period from July 2007 
to November 2007. There was a total of 363 calls with total time T = 
4198 min. Thus the ART) is then given by 
 

 
 
Thus the measured average response time for emergency calls 
over a 5-month operation period was 12 min. 
 
 
Coverage radius 
 
The terms coverage radius and critical distance will be used 
interchangeably. We will base this work on two coverage radii, r1 
and r2. The first coverage radius, r1 is calculated from the 5-month 
RAS data and the second, r2 will be based on the 10 minute 
response time set by the US EMS 1973 Act for all emergency 
cases in urban areas. 
Coverage radius, r1, of our ambulances was computed from basic 
information of the known allowable constant ambulance speed of 

 and the average response time calculated from 

the 5-month data obtained from the RAS. From our known 
allowable, constant ambulance speed, the first coverage radius 
based on the average response time of 12 min gives 
 

 
 
A 10 min response time based on VA = 40 km=h will correspond to 
a coverage radius of 
 

 
 
 
System-wide probability  
 
We consider the total period of 5 months within which the data was 
taken: July, August and October are made up of 31 days and 
September, November are 30 days. Thus the total number of days 
 
 
is 
  

 
  
Converting to minutes we have 220320 min. The number of 
ambulances, NA, used over the period was just a single 
ambulance. Thus our calculation will yield the system-wide 
probability p:  
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Table 8. Solutions with parameters: p = 0:02, response time = 12 min, coverage radius = 8 km, M = 
7. 
 

Run Nodes (No. of facilities) Min Average Max 
1 11(2), 15(1), 48(4) 359.5280 361.8305 362.9997 
2 1(4), 34(2), 49(1) 361.4397 362.1359 362.9997 
3 1(4), 17(2), 37(1) 359.6264 362.5669 362.9997 
4 30(2), 31(4), 43(1) 360.8752 362.4097 362.9997 

 
 
 

Table 9.Table of deviations. 
 

No. Average object Object value deviation 
1 361.8305 1.1692 
2 362.1359 0.8638 
3 362.5669 0.4328 
4 362.4097 0.5900 

 
 
 

Table 10. Table of solution selection. 
 

No. Node Facilities Covered nodes 

Kokobeng 1 
Aboabo,Adum,Ahinsan,Amakom,Anloga,Asafo,Asokwa,Bantama,Bomso,Bompata 
Buokrom,Dichemso,Fanti Newtown,KATH,Kokobeng,Kejetia,Manhyia,Asuoyeboa 

   

Asuoyeboa 2 Abrepo,Adiebeba,Adum,Ampabame,Asafo,Asuoyeboa,Bantam,Bohyen,Breman,Fanti, 
Newtonw,KATH,Kejetia,Kwadaso Estate,Suame,Tafo,Tarkwa Maakro,Aboabo 

   3 

Aboabo 4 

Aboabo,Abrepo,Adiebeba,Adum,Amakom,Ampabame,Anloga,Anwomaso,Asafo, 
AsawasiZongo,Ashanti,Newtown,Asokore,Mampong,Asokwa,Ayeduase,Ayigya,Bantama 
Bohyen,Bomso,Bompata,Buokrom,Dichemso,Bompata,Buokrom,Dichemso,Fanti 
,Newtown,KATH,Kejetia,Kentinkrono,Kwadaso,Estate,Kentinkrono,Kwadaso 
Estate,Manhyia,Oduoum,PankronoSipe Tinpon,Suame,Tafo 

 
 
 
RESULTS AND DISCUSSION 
 
A MATLAB program based on the GA with random key 
coding was written to optimally locate seven ambulances 
at the submetro centres of the Kumasi metropolis. We 
performed 30 runs of the program with each run 
consisting of 100 iterations. The program for obtaining 
our solutions was run on an Intel Pentium (R) with 1.8 
GHz processor speed and 1GB RAM running Ubuntu 
8.04 LTS with a Linux 2.6.24-19 Kernel and the algorithm 
was implemented in MATLAB (Release, 2007b). The 
best results out of the 30 runs are displayed in Table 8. It 
contains the demand covered using the algorithm. Each 
solution has three candidate sites (nodes) each having 
the number of ambulances to be placed entered beside it 
in bracket. 

Facility sites were selected based on the results of 
program run that produced the maximum objective 
function value. This was 362.9997. However, the solution 
was not unique. To determine  the  optimal  solution  from 

the four solutions we introduce in this paper the statistical 
measure of deviation in the analysis of the solutions. The 
deviation measure gives the absolute difference between 
the maximum value and the average value. We thus 
consider the optimal solution to be the one with the 
highest average objective function value. As Table 9 
shows such a solution is the one with the minimum 
deviation between the maximum objective function value 
and the mean objective function value. Thus solution 
three is the optimal solution. Figure 1 indicates facility 
sites for the optimal solution and the number of 
ambulances for each facility site. Table 10 shows the 
selected sites and their covered nodes. 
 
 
Conclusion 
 
We have been able to solve the ambulance location 
problem using a reformulation of the MEXCLP by 
Saydam and McKnew (1985), modeled  with  a  random-key 
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Figure 1. Map of Kumasi metropolis with buffered nodes and chosen optimal facility site. 



26        Afr. J. Math. Comput. Sci. Res. 
 
 
 
genetic algorithm implementation. It is been seen from 
the results that 99.9999% of the total demand was 
covered within the RAS computed coverage radius of 8 
km (12 min response time) with system-wide probability, 
p=0.02 and total number of ambulances, M =7. 

The ambulance locations were finely distributed based 
on the model and the demand generated at the various 
nodes. Four ambulances are being assigned to a location 
that is surrounded by high concentration of sub-urban 
centres which can facilitate easy reach. It is also 
complemented by the other two locations which are on 
either side of it. Using our algorithm the requirements of 
10 min response time set by the US (1973) Federal EMS 
was tested on our data. The parameters were coverage 
radius of r2 = 7 km, system-wide probability p=0:02, 
number of ambulances M=7 and the US (1973) Federal 
EMS Act requirement of 10 min response time with 
over95% of demand coverage. We obtained solutions 
that exceeded the coverage stipulated for the EMS Act. 
The minimum percentage coverage encountered was 
98% which still exceeds what the act stipulates. 

The minimum percentage coverage encountered was 
98% which is still exceeds what is stipulated. The 
percentage of total demand covered in both cases are far 
above the standard set by the US (1973) Federal EMS 
Act and this clearly  demonstrates  how  the  model  used 
can be efficient. 
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