African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - 7F324F962339


Vol.11(2), pp. 28-37 , January 2017
DOI: 10.5897/AJMR2016.8361
ISSN: 1996-0808



Review

Thermostable xylanase from thermophilic fungi: Biochemical properties and industrial applications



Carla Lieko Della Torre
  • Carla Lieko Della Torre
  • Center of Medical Sciences and Pharmaceutical, Western Paraná State University, Rua: Universitária 2069 CEP: 85819-110, State of Paraná, Cascavel, Brazil.
  • Google Scholar
Marina Kimiko Kadowaki*
  • Marina Kimiko Kadowaki*
  • Center of Medical Sciences and Pharmaceutical, Western Paraná State University, Rua: Universitária 2069 CEP: 85819-110, State of Paraná, Cascavel, Brazil.
  • Google Scholar







 Received: 31 October 2016  Accepted: 22 December 2016  Published: 14 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Filamentous fungi have been investigated as producer of xylanases with relevant characteristics for application in different industrial sectors, such as bakery, beverage, biofuel, textile, animal feed, pharmaceutical, pulp and paper. Thus, this review will focus on biochemical properties and industrial use of thermostable xylanases produced by different filamentous fungi, as well as mechanisms of adaptation of thermophilic organisms to tolerate in high-temperature environments. These enzymatic properties of thermal and pH stability are crucial, especially in processes such as the manufacture of animal feed, pulp and paper industry. Reports on changes in enzyme structure, such as site-directed mutagenesis, insertion or substitution of amino acids, addition of disulfide bonds in the alpha helix or beta-sheet structure for improving the thermal stability will also be reported. However, strains of Thermomyces lanuginosus has been described as good producers of thermostable xylanases, as well as promising enzymes, because it does not require any change in structure to increase the tolerance to high temperatures.

Key words: Hemicellulase, thermostability, Thermomyces.

Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011). Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Biores. Technol. 102(6):4304-4312.
Crossref

 

Apinis AE, Eggins HOW (1966). Thermomyces Ibadanensis sp.nov. from oil palm kernel stacks in Nigeria. T. Brit. Mycol. Soc. 49(4):629-632.
Crossref

 

Araújo R, Casal M, Cavaco-Paulo A (2008). Application of enzymes for textile fibres processing. Biocatal. Biotransfor. 26(5):332–349.
Crossref

 

Ávila-Cisneros N, Velasco-Lozano S, Huerta-Ochoa S, Córdova-López J, Gimeno M, Favela-Torres M (2014). Production of thermostable lipase by Thermomyces lanuginosus on solid-state fermentation: selective hydrolysis of sardine oil. Appl. Biochem. Biotechnol. 174(5):1859-1872.
Crossref

 

Badhan AK, Chadha BS, Kaur J, Saini HS, Bhat MK (2007). Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresour. Technol. 98(3):504-510. 
Crossref

 

Badhan AK, Chadha BS, Saini HS (2008). Purification of the alkaliphilic xylanases from Myceliophthora sp. IMI 387099 using cellulose-binding domain as an affinity tag. World J. Microbiol. Biotechnol. 24(7):973-981.
Crossref

 

Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J (2012). Application of thermostable xylanase of Bacillus pumilus in textile processing. Indian J. Microbiol. 52(2):222-229.
Crossref

 

BCC Research: Global markets for enzymes in industrial applications. 

View

 

Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O'Donohue M, Chabbert B (2004). Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr. Res. 339(15):2529-2540.
Crossref

 

Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001). Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56(3-4):326-338.
Crossref

 

Benassi VM, Lucas RC, Jorge JA, Polizeli MLTM (2014). Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production. Braz. J. Microbiol. 45(4):1459-1467.
Crossref

 

Bennett NA, Ryan J, Biely P, Vrsanska M, Kremnicky L, Macris BJ, Kekos D, Christakopoulos P, Katapodis P, Claeysses M, Nerinckx W, Ntauma P, Bhat MK (1998). Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr. Res. 306(3):445-455.
Crossref

 

Bunce ME (1961). Humicola Stellatus sp.nov., a thermophilic mould from hay. T. Brit. Mycol. Soc. 44(3):372-385. Doi:10.1016/S0007-1536(61)80031-4.
Crossref

 

Cai H, Shi P, Bai y, Huang H, Yuan T, Yang P, Luo H, Meng K, Yao B (2011). A novel thermoacidophilic family 10 xylanase from Penicillium Pinophilum C1. Process Biochem. 46(12):2341-2346.
Crossref

 

Carvalho W, Canilha L, Ferraz A, Milagres AMF (2009). Uma visão sobre a estrutura, composição e biodegradação da madeira. Quim. Nova. 32(8):2191-2195.
Crossref

 

Cesar T, Mrša V (1996). Purification and properties of the xylanase produced by Thermomyces lanuginosus. Enzyme Microb. Technol. 19(4):289-296.
Crossref

 

Chanwicha N, Katekaew S, Aimi T, Boonlue S (2015). Purification and characterization of alkaline xylanase from Thermoascus Aurantiacus var. levisporus KKU-PN-I2-1 cultivated by solid-state fermentation. Mycoscience 56(3):309-318.
Crossref

 

Chaudhuri A, Maheshwari R (1996). A novel invertase from a thermophilic fungus Thermomyces lanuginosus: its requirement of thiol and protein for activation. Arch. Biochem. Biophys. 327(1):98-106.
Crossref

 

Chen CC, Luo H, Han X, Lv P, Ko TP, Peng W, Huang CH, Wang K, Gao J, Zheng Y, Yang Y, Zhang J, Yao B, Guo RT (2014). Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. J. Biotechnol. 189:175-182.
Crossref

 

Chen Z, Jia H, Yang Y, Yan Q, Jiang Z, Teng C (2012). Secretory expression of a β-xylosidase gene from Thermomyces lanuginosus in Escherichia Coli and characterization of its recombinant enzyme. Lett. Appl. Microbiol. 55(5):330-337.
Crossref

 

Christopher L, Bissoon S, Singh S, Szendefy J, Szakacs G (2005). Bleach-enhancing abilities of Thermomyces lanuginosus xylanases produced by solid state fermentation. Process Biochem. 40(10):3230-3235.
Crossref

 

Collins T, Gerday C, Feller G (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29(1):3-23.
Crossref

 

Conway M, Macario AL (2000). Stressors, stress and survival: overview. Front. Biosci. 5:780-786.
Crossref

 

Corrêa JM, Christi D, Torre CLD, Henn C, Conceição-Silva JL, Kadowaki MK, Simão RCG (2016). High levels of β-xylosidase in Thermomyces Lanuginosus: potential use for saccharification. Braz. J. Microbiol. 47(3):680-690.
Crossref

 

Csiszár E, Losonczi A, Koczka B, Szakács G, Pomlényi A (2006). Degradation of lignin-containing materials by xylanase in biopreparation of cotton. Biotechnol. Lett. 28(10):749-753.
Crossref

 

Damaso MCT, Andrade CMMC, Pereira N (2002). Production and properties of the cellulase-free xylanase from Thermomyces Lanuginosus IOC-4145. Braz. J. Microbiol. 33:333-338.
Crossref

 

de Oliveira TB, Gomes E, Rodrigues A (2015). Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19(1):31-37.
Crossref

 

Dhiman SS, Sharma J, Battan B (2008). Industrial applications and future prospects of microbial xylanases: a review. BioResources 3(4):1377-1402.

 

Fan G, Katrolia P, Jia H, Yang S, Yan Q, Jiang Z (2012). High-Level expression of a xylanase gene from the thermophilic fungus Paecilomyces Thermophila in Pichia Pastoris. Biotechnol. Lett 34(11):2043-2048.
Crossref

 

Fan G, Yang S, Yan Q, Guo Y, Li Y, Jiang Z (2014). Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea Cinnamomea. Int. J. Biol. Macromol. 70:482-489.
Crossref

 

Fang Z, Xu L, Pan D, Jiao L, Liu Z, Yan Y (2014). Enhanced production of Thermomyces Lanuginosus lipase in Pichia Pastoris via genetic and fermentation strategies. J. Ind. Microbiol. Biot. 41(10):1541-1551.
Crossref

 

Fawzi E (2011). Highly thermostable xylanase purified from Rhizomucor miehei NRL 3169. Acta Biol. Hung. 62(1):85-94.
Crossref

 

Flores-Gallegos AC, Contreras-Esquivel JC, Morlett-Chávez JA, Aguilar CN, Rodríguez-Herrera R (2015). Comparative study of fungal strains for thermostable inulinase production. J. Biosci. Bioeng. 119(4):421-426.
Crossref

 

Fortkamp D, Knob A (2014). High xylanase production by Trichoderma viride using pineapple peel as substrate and its apllication in pulp biobleaching. Afr. J. Biotechnol. 13(22):2248-2259.
Crossref

 

Gaffney M, Carberry S, Doyle S, Murphy R (2009). Purification and characterisation of a xylanase from Thermomyces lanuginosus and its functional expression by Pichia pastoris. Enzyme Microb. Technol. 45 (5): 348–354. 
Crossref

 

Georis J, de Lemos Esteves F, Lamotte-Brasseur J, Bougnet V, Devreese B, Giannotta F, Granier B, Frère JM (2000). An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study. Protein Sci. 9 (3):466-475.
Crossref

 

Goluguri BR, Thulluri C, Cherupally M, Nidadavolu N, Achuthananda D, Mangamuri LN, Addepally U (2012). Potential of thermo and alkali stable xylanases from Thielaviopsis Basicola (MTCC-1467) in biobleaching of wood kraft pulp. Appl. Biochem. Biotechnol. 167(8):2369-2380.
Crossref

 

Gomes E, Guez MAU, Martin N, Silva R (2007). Enzimas termoestáveis: fontes, produção e aplicação industrial. Quim. Nova 30(1):136-145.
Crossref

 

Gonçalves AZL, Carvalho AFA, Silva R, Gomes E (2008). Localization and partial characterization of thermostable glucoamylase produced by newly isolated Thermomyces Lanuginosus TO3 in submerged fermentation. Braz. Arch. Biol. Technol. 51(4):857-865.
Crossref

 

Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C (1998). Thermophilic xylanase from Thermomyces Lanuginosus: high-resolution x-ray structure and modeling studies. Biochemistry 37(39):13475-13485.
Crossref

 

Guimarães NCA, Sorgatto M, Peixoto-Nogueira SC, Betini JHA, Zanoelo FF, Marques MR, Polizeri MLTM, Giannesi GC (2013). Xylanase production from Aspergillus Japonicus var aculeatus: production using agroindustrial residues and biobleaching effect on pulp. J. Biocatal. Biotransform. 2(1):1-6.

 

Haki GD, Rakshit SK (2003). Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89(1):17-34.
Crossref

 

Hakulinen N, Turunen O, Janis J, Leisola M, Rouvinen J (2003). Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem. 270(7):1399-1412.
Crossref

 

Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Župančič S (1996). Production of fungal xylanases. Bioresour. Technol. 58(2):137-161.
Crossref

 

Heinen PR, Henn C, Peralta RM, Bracht A, Simão RCG, Conceição Silva JL, Polizeli MLTM, Kadowaki MK (2014). Xylanase from Fusarium heterosporum: properties and influence of thiol compounds on xylanase activity. Afr. J. Biotechnol. 13(9):1047-1055.
Crossref

 

Howard RL, Abotsi E, Jansen REL, Howard S (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2(12):602-619.
Crossref

Jain KK, Bhanja Dey T, Kumar S, Kuhad RC (2015). Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus Aurantiacus RCKK: a potential fungus. Bioprocess Biosyst. Eng. 38(4):787-796.
Crossref

 

Jiang ZQ, Yang SQ, Tan SS, Li LT, Li XT (2005). Characterization of a xylanase from the newly isolated thermophilic Thermomyces Lanuginosus CAU44 and its application in bread making. Lett. Appl. Microbiol. 41(1):69-76.
Crossref

 
 

Jiang Y, Wu Y, Li H (2015). Immobilization of Thermomyces Lanuginosus xylanase on aluminum hydroxide particles through adsorption: characterization of immobilized enzyme. J. Microbiol. Biotechnol. 25(12):2016-2023.
Crossref

 
 

Joo JC, Pack SP, Kim YH, Yoo YJ (2011). Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J. Biotechnol. 151(1):56-65.
Crossref

 
 

Juturu V, Wu JC (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnol. Adv. 30(6):1219-1227.
Crossref

 
 

Kamal KB, Balakrishnan H, Rele MV (2004). Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J. Ind. Microbiol. Biotechnol. 31(2):83-87.
Crossref

 
 

Kanwar SS, Devi S (2012). Thermostable xylanases of microbial origin: recent insights and biotechnological potential. Int J Biochem Biotechnol. 1(1):1-20.

 
 

Khan FI, Govender A, Permaul K, Singh S, Bisetty K (2015). Thermostable chitinase II from Thermomyces lanuginosus SSBP: cloning, structure prediction and molecular dynamics simulations. J. Theor. Biol. 374:107-114.
Crossref

 
 

Khucharoenphaisan K, Sinma K (2010). β-xylanase from Thermomyces lanuginosus and its biobleaching application. Pak. J. Biol. Sci. 13(11):513–26.
Crossref

 
 

Kocabaş DS, Güder DS, Özben N (2015). Purification strategies and properties of a low-molecular weight xylanase and its application in agricultural waste biomass hydrolysis. J. Mol. Catal. B: Enzym. 115:66-75.
Crossref

 
 

Kunamneni A, Permaul K, Singh S (2005). Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 100(2):168-171.
Crossref

 
 

Li DC, Yang YJ, Shen CY (1997). Protease production by the thermophilic fungus Thermomyces lanuginosus. Mycol Res. 101(1):18-22.
Crossref

 
 

Li X, Jiang Z, Yang LLS, Feng W, Fan J, Kusakabe I (2005). Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour. Technol. 96(12):1370-1379. 
Crossref

 
 

Li XJ, Zheng RC, Wu ZM, Ding X, Zheng YG (2014). Thermophilic Esterase from Thermomyces lanuginosus: molecular cloning, functional expression and biochemical characterization. Protein Expr. Purif. 101:1-7.
Crossref

 
 

Lin J, Ndlovu LM, Singh S, Pillay B (1999). Purification and biochemical characteristics of beta-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol. Appl. Biochem. 30:73-79.

 
 

López-García (1999). DNA supercoiling and temperature adaptation: a clue to early diversification of life. J. Mol. Evol. 49(4):439-452.
Crossref

 
 

Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009). An alkaline active xylanase: insights into mechanisms of high ph catalytic adaptation. Biochimie 91(9):1187-1196.
Crossref

 
 

Manimaran A, Kumar KS, Permaul K, Singh S (2009). Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl. Microbiol. Biotechnol. 81(5):887-893.
Crossref

 
 

Marguet E, Forterre P (1998). Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2(2):115-122.
Crossref

 
 

Masui DC, Zimbardi AL, Souza FH, Guimarães LH, Furriel RP, Jorge JA (2012). Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J. Microbiol. Biotechnol. 28(8):2689-2701.
Crossref

 
 

McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG (2014). Purification and characterisation of a β-1,4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl. Biochem. Biotechnol. 172(4):1747-1762.
Crossref

 
 

Mehta D, Satyanarayana T (2013). Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of thermophiles. In: Satyanarayana T, Littlechild J, Kawarabayasi Y., eds. Diversity of hot environments and thermophilic microbes. Springer Netherlands, pp. 45-46.

 
 

Nirmal NP, Laxman RS (2014). Enhanced thermostability of a fungal alkaline protease by different additives. Enzyme Res. 2014:1-8.
Crossref

 
 

Oliveira DS, Telis-Romero J, Da-Silva R, Franco CML (2014). Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem. 143:139-146.
Crossref

 
 

Pariza MW, Cook M (2010). Determining the safety of enzymes used in animal feed. Regul. Toxicol. Pharm. 56(3):332-342.
Crossref

 
 

Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67(5):577-591.
Crossref

 
 

Pugh GJF, Blakeman JP, Morgan-Jones G (1964) Thermomyces verrucosus sp.nov. and T. lanuginosus. T. Brit. Mycol. Soc. 47(1):115-121.
Crossref

 
 

Rezessy-Szabó JM, Nguyen QD, Hoschke A, Braet C, Hajós G, Claeyssens M (2007). A novel thermostable α-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: purification and characterization. BBA-Gen. Sub. 1770(1):55-62.
Crossref

 
 

Ribeiro LFC, Lucas RCD, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damásio AR (2014). A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol. Biofuels. 7(1):115.
Crossref

 
 

Romdhane IBB, Achouri IM, Belghith H (2010). Improvement of highly thermostable xylanases production by Talaromyces thermophiles for the agro-industrials residue hydrolysis. Appl Biochem. Biotechnol. 162:1635-1646.
Crossref

 
 

Ruller R, Deliberto L, Ferreira TL, Ward RJ (2008). Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 70(2):1280-1293.
Crossref

 
 

Scholz S, Sonnenbichler J, Schäfer W (1992). Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306(2-3):239-242.
Crossref

 
 

Sharma M, Chadha BS, Saini HS (2010). Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions. Bioresour. Technol. 101(22):8834-8842.
Crossref

 
 

Sharma M, Kumar A (2013). Xylanases: an overview. Br. Biotechnol. J. 3(1):1-28.
Crossref

 
 

Sharma P, Sood C, Singh G, Capalash N (2015). An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J. Clean. Prod. 87(1):966-970.
Crossref

 
 

Shi P, Du Y, Yang H, Huang H, Zhang X, Wang Y, Yao B (2015). Molecular characterization of a new alkaline-tolerant xylanase from Humicola insolens Y1. Biomed Res. Int. 1-7.
Crossref

 
 

Shrivastava S, Shukla P, Deepalakshmi PD, Mukhopadhyay K (2013). Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J. Microbiol. Biotechnol. 29(12):2407-2415.
Crossref

 
 

Silva NFS, Simões MR, Knob A, Moraes SS, Henn C, Conceiçã-Silva JL, Simão RCG, Maller A, Kadowaki MK (2016). Improvement in the bleaching of kraft pulp with xylanase from Penicillium crustosum FP11 isolated from the Atlantic forest. Biocatal. Biotransfor. pp. 1-9.
Crossref

 
 

Singh S, Madlala AM, Prior BA (2003). Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol. Rev. 27(1):3-16.
Crossref

 
 

Singh S, Pillay B, Dilsook V, Prior BA (2000). Production and properties of hemicellulases by a Thermomyces lanuginosus strain. J. Appl. Microbiol. 88(6):975-982.
Crossref

 
 

Song L, Tsang A, Sylvestre M (2015). Engineering a thermostable fungal GH10 xylanase, importance of n-terminal amino acids. Biotechnol. Bioeng. 112(6):1081-1091.
Crossref

 
 

Sonia KG, Chadha BS, Saini HS (2005). Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid- state fermentation. Bioresour. Technol. 96(14):1561-1569.
Crossref

 
 

Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K (2014). Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J. Biotechnol. 187:139-146.
Crossref

 
 

Subramaniyan S, Prema P (2000). Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183(1):1-7.
Crossref

 
 

Sydenham R, Zheng Y, Riemens A, Tsang A, Powlowski J, Storms R (2014). Cloning and enzymatic characterization of four thermostable fungal endo-1,4-β-xylanases. Appl. Microbiol. Biotechnol. 98(8):3613-3628.
Crossref

 
 

Taylor TJ, Vaisman II (2010). Discrimination of thermophilic and mesophilic proteins. BMC Struct. Biol. 10(Suppl 1):S5.
Crossref

 
 

Techapun C, Poosaran N, Watanabe M, Sasaki K (2003). Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem. 38(9):1327-1340.
Crossref

 
 

Verma D, Satyanarayana T (2012). Molecular approaches for ameliorating microbial xylanases. Bioresour. Technol. 117:360-367.
Crossref

 
 

Wakiyama M, Tanaka H, Yoshihara K, Hayashi S, Ohta K (2008). Purification and properties of family-10 endo-1,4-β-xylanase from Penicillium citrinum and structural organization of encoding gene. J. Biosci. Bioeng. 105(4):367-374.
Crossref

 
 

Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK (2014). Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J. Microbiol. Biotechnol. 30(10):2597-2608.
Crossref

 
 

Wang K, Luo H, Tian J, Turunen O, Huang H, Shi P, Hua H, Wang C, Wang S, Yao B (2014). Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl. Environ. Microbiol. 80(7):2158-2165.
Crossref

 
 

Wang X, Luo H, Yu W, Ma R, You S, Liu W, Hou L, Zheng F, Xie X, Yao B (2016). A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry. Food Chem. 199:516-523.
Crossref

 
 

Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW (2015). Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int. J. Biol. Macromol. 75:44-50.
Crossref

 
 

Wang Y, Fu Z, Huang H, Zhang H, Yao B, Xiong H, Turunen O (2012). Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an n-terminal disulfide bridge. Bioresour. Technol. 112:275-279.
Crossref

 
 

Winger AM, Heazlewood JL, Chan LJG, Petzold CJ, Permaul K, Singh S (2014). Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. J. Ind. Microbiol Biotechnol. 41(11):1687-1696.
Crossref

 
 

Xie J, Song L, Li X, Yi X, Xu H, Li J, Qiao D, Cao Y (2011). Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264. Curr. Microbiol. 62(1):242-248.
Crossref

 
 

Xiong H, Nyyssölä A, Jänis J, Pastinen O, Weymarn NV, Leisola M, Turunen O (2004). Characterization of the xylanase produced by submerged cultivation of Thermomyces lanuginosus DSM 10635. Enzyme Microb. Technol. 35(1):93-99.
Crossref

 
 

Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006). High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour. Technol. 97(15):1794-1800.
Crossref

 
 

You C, Huang Q, Xue H, Xu Y, Lu H (2010). Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. Biotechnol. Bioeng. 105(5):861-870.

 
 

Zhan FX, Wang QH, Jiang SJ, Zhou YL, Zhang GM, Ma YH (2014). Developing a xylanase XYNZG from Plectosphaerella cucumerina for baking by heterologously expressed in Kluyveromyces lactis. BMC Biotechnol. 14(1):107
Crossref

 
 

Zhang M, Puri AK, Govender A, Wang Z, Singh S, Permaul K (2015). The multi-chitinolytic enzyme system of the compost-dwelling thermophilic fungus Thermomyces lanuginosus. Process Biochem. 50(2):237-244.
Crossref

 
 

Zhang S, Zhang K, Chen X, Chu X, Sun F, Dong Z (2010). Five mutations in n-terminus confer thermostability on mesophilic xylanase. Biochem. Biophys. Res. Commun. 395(2):200-206.
Crossref

 
 

Zheng H, Liu Y, Sun M, Han Y, Wang J, Sun J, Lu F (2014). Improvement of alkali stability and thermostability of Paenibacillus campinasensis family-11 xylanase by directed evolution and site-directed mutagenesis. J. Ind. Microbiol. Biotechnol. 41(1):153-162.
Crossref

 

 


APA Torre, C. L. D., & Kadowaki, M. K. (2017). Thermostable xylanase from thermophilic fungi: Biochemical properties and industrial applications. African Journal of Microbiology Research, 11(2), 28-37.
Chicago Carla Lieko Della Torre and Marina Kimiko Kadowaki. "Thermostable xylanase from thermophilic fungi: Biochemical properties and industrial applications." African Journal of Microbiology Research 11, no. 2 (2017): 28-37.
MLA Carla Lieko Della Torre and Marina Kimiko Kadowaki. "Thermostable xylanase from thermophilic fungi: Biochemical properties and industrial applications." African Journal of Microbiology Research 11.2 (2017): 28-37.
   
DOI 10.5897/AJMR2016.8361
URL http://academicjournals.org/journal/AJMR/article-abstract/7F324F962339

Subscription Form