African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - 81E921C42590


Vol.8(2), pp. 129-137 , January 2014
DOI: 10.5897/AJMR2013.6257
ISSN: 1996-0808
 Total Views: 335
 Downloaded: 284




Full Length Research Paper

The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains



Maryam Diani
  • Maryam Diani
  • University of Ankara, Institute of Biotechnology, 06110, Ankara, Turkey
  • Google Scholar
Ozlem Gunay Esiyok
  • Ozlem Gunay Esiyok
  • University of Ankara, Institute of Biotechnology, 06110, Ankara, Turkey
  • Google Scholar
M. Nima Ariafar
  • M. Nima Ariafar
  • University of Ankara, Institute of Biotechnology, 06110, Ankara, Turkey
  • Google Scholar
Fatma Neslihan Yuksel
  • Fatma Neslihan Yuksel
  • University of Ankara, Department of Biology, 06110, Ankara, Turkey
  • Google Scholar
Evrim Gunes Altuntas
  • Evrim Gunes Altuntas
  • University of Ankara, Institute of Biotechnology, 06110, Ankara, Turkey
  • Google Scholar
Nefise Akcelik
  • Nefise Akcelik
  • University of Ankara, Institute of Biotechnology, 06110, Ankara, Turkey
  • Google Scholar







 Received: 07 August 2013  Accepted: 25 November 2013  Published: 08 January 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Enterococcus faecium has become an increasingly important nosocomial pathogen due to formation of biofilms on several surfaces. Sixty one (61) E. faecium strains isolated from blood, urine and fecal were assessed for biofilm production, the effect of different glucose concentration on biofilm production and also the presence of esp, fsr and gelE genes. Pulsed field gel electrophoresis (PFGE) method was performed to show chromosomal similarities and also to determine correlation between biofilm formation ability and genetic identity of E. faecium strains. It was observed that glucose concentration of the medium and incubation period can affect biofilm formation of the bacteria. When tested strains were incubated in a medium containing 1% glucose for 48 h, 66.66% of urine isolates, 60.71% fecal isolates and 25% of blood isolates produced strong biofilm structures. esp-positive strains (80% of the all isolates) were also identified as strong biofilm producers compared to esp-negative isolates. As a result of PFGE analyses, isolates numbered 14 (isolated from fecal sample) and 81 (isolated from blood sample) were classified in minor group B at a level of 48% similarity. Out of these two isolates, all the isolates were included in major group A with 43% similarity level and this group was subdivided into six subgroups.

 

Key words: Enterococcus faecium, biofilm, Pulsed Field Gel Electrophoresis (PFGE), esp, fsr, gelE.

Baldassarri L, Cecchini R, Bertuccini L, Ammendolia MG, Losi F, Arciola CR, Montanaro L, Di Rosa R, Gherardi G, Dicuonzo G, Orefici G, Creti R (2001). Enterococcus spp. Produces slime and survives in rat peritoneal macrophages. Med. Microbiol. Immunol.190:113-120.
 
Bedendo J, Pignatari ACC (2000). Typing of Enterococcus faecium by polymerase chain reaction and pulsed field gel electrophoresis. Braz. J. Med. Biol. Res. 33:1269-1274.
Crossref
 
CHEF-DR III Pulsed Field Electrophoresis Systems, Instruction Manual and Applications Guide. (1992). Catalog Numbers 170-3690 through 170-3703, Bio-Rad, U.S.
 
Cheng AF, Char TS, Ling M (2002). Are multiply resistant enterococci a common phenomenon in Hong Kong. J. Antimicrob. Chemother. 50:761-763.
Crossref
 
Di Rosa R, Creti R, Venditti M, D'Amelio R, Arciola CR, Montanaro L, Baldassari L (2006). Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol. Lett. 256:145-150.
Crossref
 
Dupre I, Zanetti S, Schito AM, Fadda G, Sechi LA (2003). Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J. Med Microbiol.52:491-498.
Crossref
 
Dworniczek E, Wojciech L, Sobieszczansk, B, Seniuk A (2005). Virulence of Enterococcus isolates collected in Lower Silesia (Poland). Scand. J. Infect. Dis. 37:630-636.
Crossref
 
Eaton TJ, Gasson MJ (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67:1628-1635.
Crossref
 
Extremina CI, Costa L, Aguiar AI, Peixe L, Fonseca AP (2011). Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. J. Microbiol. Methods. 84:167-173.
Crossref
 
Grammenou P, Spiliopoulou I, Sazakli E, Papapetropoulou M (2006). PFGE analysis of enterococci isolates from recreational and drinking water in Greece. J. Water Health. 
 
Hacker J, Hentschel, Dobrindt U (2003). Prokaryotic Chromosomes and Disease. Science 301:790-793.
Crossref
 
Hallgren A, Saeedi B, Nilsson M, Monstein HJ, Isaksson B, Hanberger, H, Nilsson L (2003). Genetic relatedness among Enterococcus faecalis with transposon-mediated high-level gentamicin resistance in Swedish intensive care units. J. Antimic. Chemother. 52:162-167.
Crossref
 
Hancock LE, Perego M (2004). The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 186:5629-5639.
Crossref
 
Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A (2010). Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin.Microbiol.Infec.16:541-554.
Crossref
 
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-NielsenT (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48:1511-1524.
Crossref
 
Kristich CJ, Li YH, Cvitkovitch DG, Dunny GM (2004). Esp-independent biofilm formation by Enterococcus faecalis. J. Bacteriol. 186(1):154-163.
Crossref
 
Laverde Gomez JA, Hendrickx APA, Willems RJ, Top J, Sava I, Huebner J, Witte W, Werner G (2011). Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island. Plos One. 6(4):e16720.
Crossref
 
Loo CY, Corliss DA, Ganeshkumar N (2000).Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182:1374-1382.
Crossref
 
Macovei L, Ghosh A, Thomas VC, Hancock LE, Mahmood S, Zurek L (2009). Enterococcus faecalis with the gelatinase phenotype regulated by the fsr operon and with biofilm-forming capacity are common in the agricultural environment. Environ. Microbiol. 11(6):1540-1547.
Crossref
 
Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Dupre I, Sechi LA (2003). Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 88:291- 304.
Crossref
 
Marinho AR, Martins PD, Ditmer EM, d'Azevedo PA, Frazzon J, Van Der Sand ST, Frazzon APG (2013). Biofilm formation on polystyrene under different temperatures by antibiotic resistant Enterococcus faecalis and Enterococcus faecium isolated from food. Braz. J. Microbiol. 44(2):423-426.
Crossref
 
Mohamed JA, Huang DB (2007). Biofilm formation by enterococci. J. Med. Microbiol.56:1581-1588.
Crossref
 
Mohamed JA, Huang W, Nallapareddy SR, Teng F, Murray BE (2004). Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect. Immun. 72:3658-3663.
Crossref
 
Ogier JC, Serror P (2008). Safety assessment of dairy microorganisms: The Enterococcus genus. Int. J. Food Microbiol. 126:291-301.
Crossref
 
Paganelli FL, Willems RJ, Leavis HL (2012). Optimizing future treatment of enterococcal infections: attacking the biofilm. Trends Microbiol. 20:40-49.
Crossref
 
Palmer KL, Kos VN, Gilmore MS (2010). Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 13:632-639.
Crossref
 
Patterson JE, Kelly CC (1998). Pulsed-field gel electrophoresis as an epidemiologic tool for enterococci and streptococci. Methods Cell Sci. 20:233-239.
Crossref
 
Paulsen IT, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003). Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus faecalis. Science. 299:2071-2074.
Crossref
 
Pillai SK, Sakoulas G, Eliopoulos GM, Moellering RCJ, Murray BE, Inouye RT (2004). Effects of Glucose on fsr-Mediated Biofilm Formation in Enterococcus faecalis. J. Infect. Dis. 190:967-970.
Crossref
 
Pillai SK, Sakoulas G, Gold HS, Wennersten C, Eliopoulos GM (2002). Prevalence of the fsr locus in Enterococcus faecalis infections. J. Clin. Microbiol. 7:2651-2652.
Crossref
 
Qin X, Sıngh KV, Weinstock GM, Murray BE (2000). Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun. 68(5):2579-2586.
Crossref
 
Qin X, Singh KV, Weinstock GM, Murray BE (2001). Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J. Bacteriol. 183(11):3372-3382.
Crossref
 
Ramadhan AA, Hegedus E (2005). Biofilm formation and esp gene carriage in enterococci. J. Clin. Pathol. 58:685-686.
Crossref
 
Rice LB, Carias LL, Rudin S, Lakticova V, Wood A, Hutton-Thomas R (2005). Enterococcus faecium Low-Affinity pbp5 Is a Transferable Determinant. Antimicrob. Agents Chemother. 49:5007-5012.
Crossref
 
Roberts JC, Singh KV, Okhuysen PC, Murray BE (2004). Molecular epidemiology of the fsr locus and of gelatinase production among different subsets of Enterococcus faecalis isolates. J. Clin. Microbiol. 42:2317-2320.
Crossref
 
Rohlf FJ (1993). NSTSY-pc.Numerical Taxonomy and Multivariate Analysis System, Exeter Publishing, Setauket, NY.
 
Sandoe JA, Witherden IR, Cove JH, Heritage J, Wilcox MH (2003). Correlation between enterococcal biofilm formation in vitro and medical-device-related infection potential in vivo. J. Med Microbiol. 52:547-550.
Crossref
 
Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999). Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 67(1):193-200.
 
Singh KV, Nallapareddy SR, Murray BE (2007). Importance of the ebp (endocarditis and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J. Infect. Dis. 195:1671-1677.
Crossref
 
Sneath PHA, Sokal RR (1973). Numerical taxonomy. W.H. Freeman and Company, San Francisco.
 
Stepanovic S, Vukovic D, Hola V, Bonavebtura GD, Djukic S, Cirkovic I, Ruzicka F (2007). Quantification of biofilm in microtiter plates:overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS.115:891-899.
Crossref
 
Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N (2004). Enterococcal Surface Protein, Esp, Enhances Biofilm Formation by Enterococcus faecalis, Infect. Immun. 72:6032-6039.
Crossref
 
Tendolkar PM, Baghdayan AS, Shankar N (2005). The N-Terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J. Bacteriol. 187(17):6213-6222.
Crossref
 
Tendolkar PM, Baghdayan PM, Shankar N (2006). Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis. J. Bacteriol. 188(6): 2063-2072.
Crossref
 
Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penades JR, Lasa I (2001). The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67:4538-4545.
Crossref
 
Top J, Paganelli FL, Zhang X, van Schaik W, Leavis HL, van Luit-Asbroek M, van der Poll T, Leendertse M, Bonten MJM, Willems RJL (2013). The Enterococcus faecium enterococcal biofilm regulator, ebrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization. PLoS ONE 8(5):e65224. doi:10.1371/journal.pone.0065224.
Crossref
 
Tsikrikonis G, Maniatis AN, Labrou M, Ntokou E, Michail G, Daponte A, Stathopoulos C, Tsakris A, Pournaras S (2012). Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin. Microb.Pathogenesis. 52:336-343.
Crossref
 
Van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JEP, Schapendonk CME, Hendrickx APA, Nijman IJ, Bonten MJM, Tettelin H, Willems RJL (2010). Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics.11(239):1-18.
 
Van Wamel WJB, Hendrickx APA, Bonten MJM, Top J, Posthuma G, Willems RL (2007). Growth condition-dependent esp expression by Enterococcus faecium affects initial adherence and biofilm formation. Infect. Immun. 75(2):924-931.
Crossref
 
Weng PL, Ramli R, Shamsudin MN, Cheah YK, Hamat RA (2013). High genetic diversity of Enterococcus faecium and Enterococcus faecalis clinical isolates by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing from a Hospital in Malaysia. BioMed Res. Int. Article ID:938937.
 
Yoshida A, Kuramitsu HK (2002). Multiple Streptococcus mutansgenes are involved in biofilm formation. Appl. Environ. Microbiol. 68:6283-6291.
Crossref
 
Zhu X, Wang Q, Zhang C, Cheung GSP, Shen Y (2010). Prevalence, Phenotype, and Genotype of Enterococcus faecalis Isolated from Saliva and Root Canals in Patients with Persistent Apical Periodontitis. Basic Res.-Biol. 36(12):1950-1955.

 


APA Diani, M., Esiyok, O. G., Ariafar, M. N., Yuksel, F. N., Altuntas, E. G., & Akcelik, N. (2014). The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains. African Journal of Microbiology Research, 8(2), 129-137.
Chicago Maryam Diani, Ozlem Gunay Esiyok, M. Nima Ariafar, Fatma Neslihan Yuksel, Evrim Gunes Altuntas and Nefise Akcelik. "The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains." African Journal of Microbiology Research 8, no. 2 (2014): 129-137.
MLA Maryam Diani, et al. "The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains." African Journal of Microbiology Research 8.2 (2014): 129-137.
   
DOI 10.5897/AJMR2013.6257
URL http://academicjournals.org/journal/AJMR/article-abstract/81E921C42590

Subscription Form