African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - BC023AB62246


Vol.11(1), pp. 1-7 , January 2017
DOI: 10.5897/AJMR2016.8326
ISSN: 1996-0808



Full Length Research Paper

Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae)



Gustavo Bartolomeu Pedrosa Gomes da Silva
  • Gustavo Bartolomeu Pedrosa Gomes da Silva
  • Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar
Karine Fagundes Silvino
  • Karine Fagundes Silvino
  • Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar
Jadson Diogo Pereira Bezerra
  • Jadson Diogo Pereira Bezerra
  • Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar
Thaísa Gabriela Silva de Farias
  • Thaísa Gabriela Silva de Farias
  • Departamento de Nutrição, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar
Janete Magali de Araújo
  • Janete Magali de Araújo
  • Departamento de Antibióticos, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar
Tânia Lúcia Montenegro Stamford
  • Tânia Lúcia Montenegro Stamford
  • Departamento de Nutrição, Universidade Federal de Pernambuco, Av. Professor Morais Rego, 1235 - Cidade Universitária, Recife - PE, Brazil.
  • Google Scholar







 Received: 05 October 2016  Accepted: 02 December 2016  Published: 07 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The discovery of new metabolites potentially bioactive against pathogenic microorganisms, mainly multidrug resistant, has aroused interest in endophytic fungi. The plant-associated microorganisms have been an important source for development of new compounds of biotechnological interest. This study aimed to investigate the antibacterial capacity of the endophytic fungus, Phoma sp. URM 7221 isolated from the medicinal plant Schinus terebinthifolius against human-pathogenic bacteria. An endophyte was isolated from S. terebinthifolius leaves. Phoma herbarum URM7221 was characterized morphologically and on the basis of ITS rDNA sequence. Primary antimicrobial activity was evaluated using the agar diffusion method and fermentation in liquid medium. Six different solvents were used to extract the active metabolites from fungal biomass and metabolic liquid. An antimicrobial activity test from the extract was carried out using a disk diffusion method with the endophytic extract containing the best antibacterial activity. Two tests were performed: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Partially purified secondary metabolite extracts were analysed by thin layer chromatography (TLC). Liquid metabolically bioactive compounds extracted with petroleum ether revealed a MIC of 25 and 500 μg.mL−1 against S. aureus and MRSA, respectively. Ether and methanol extracts were assessed by chemical analyses and contained phenolic compounds, triterpenes, steroids, reducing sugars, mono- and sesquiterpenes. The thin layer chromatography assay showed the activity of different antimicrobial compounds produced by Phoma sp. URM7221. This endophyte (URM7221) could be efficiently used for production of bioactive metabolites against pathogenic microorganisms, with significant biotechnological potential.

Key words: Bioactive compounds, endophytic fungi, pathogenic bacteria, multidrug-resistance, antibacterial agents.

Arias CA, Murray BE. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10:266-78.
Crossref

 

Aveskamp MM, Gruiter J, Woudenberg JHC (2010). Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 65:1-60.
Crossref

 
 

Bagchi B, Banerjee D (2013). Diversity of fungal endophytes in Bauhinia vahlii (a lianas) from different regions of Paschim Medinipur district of West Bengal. Int. J. Sci. Environ. Technol. 2:748-756.

 
 

Bendaoud H, Romdhane M, Souchard JP (2010). Chemical Composition and Anticancer and Antioxidant Activities of Schinus Molle L. and Schinus Terebinthifolius Raddi Berries Essential Oils. J. Food Sci. 75:466-72.
Crossref

 
 

Bezerra JDP, Nascimento CCF, Barbosa RN (2015). Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz. J. Microbiol. 46:49-57.
Crossref

 
 

Bezerra JDP, Santos MGS, Barbosa RN (2013). Fungal endophytes from cactus Cereus jamacaru in Brazilian tropical dry forest: A first study. Symbiosis, 60:53-63.
Crossref

 
 

Boerema GH, De Gruyter J, Noordeloos ME (2004). Phoma identification manual: differentiation of specific and infra-specific taxa in culture. Wallingford, United Kingdom: CAB International.
Crossref

 
 

Carvalho MG, Melo AGN, Aragão CFS (2013). Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Rev. Bras. Plantas Med. 15:158-69.
Crossref

 
 

Ceruks M, Romoff P, Fávero AO . (2007). Constituintes fenólicos polares de Schinus terebentifolius Raddi (Anacardiaceae). Química Nova, 30:507-599.
Crossref

 
 

Chandra S (2012). Endophytic fungi: novel sources of anticancer lead molecules. Appl. Microbiol. Biot. 95:47-59.
Crossref

 
 

Chen Q, Zhang G, Jiang J, Cai L, Crous PW. (2015). Resolving the Phoma enigma. Stud. Mycol. 82:137-217.
Crossref

 
 

Clinical and Laboratory Standards Institute (CLSI) (2013). Performance Standards For Antimicrobial Susceptibility Testing, Twenty-Third Informational Supplement, M100-S21. Clin. Lab Stand Inst. 32:1-184.

 
 

Costa IPMW, Maia LC, Cavalcanti MA (2012). Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 43:1165-1173.
Crossref

 
 

Estevão LR, Mendonça FD, Baratella-Evêncio L, Simões RS, Barros ME, Arantes RM, Rachid MA, Evêncio-Neto J (2013). Effects of aroeira (Schinus terebinthifoliu Raddi) oil on cutaneous wound healing in rats. Acta Cir. Bras. 3:202-209.
Crossref

 
 

Fang MJ, Fang H, Li WJ (2011). A new diphenyl ether from Phoma sp. strain, SHZK2. Nat. Prod. Res. 26:1224-8.
Crossref

 
 

Gundel PE, Martínez GMA, Batista WB (2010). Dynamics of Neotyphodium endophyte infection in ageing seed pools: incidence of differential viability loss of endophyte, infected seed and non-infected seed. Annals Appl. Biol. 156:199-209.
Crossref

 
 

Hamada M, Kondo S, Yokoyama T (1974). Minosaminomycin, a nez antibiotic containing myo-inosamine. J Antibiot. 27:81-83.
Crossref

 
 

Hamayun M, Khan SA, Khan AL et al. (2009). Phoma sp. as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol. 19:1244-1249.

 
 

Harbone JB. (1998). Phytochemical methods: a guide to modern techniques of plant analysis. New York, United States: Chapman and Hall.

 
 

Homans AL, Fuchs A. (1970.) Direct bioautography in thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr. 51:327-329.
Crossref

 
 

Hwang JS, You YH, Bae JJ (2011). Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J. Coastal Res. 27:544-548.
Crossref

 
 

Ichikawa T, Date M, Ishikura T (1971). An improvement of kasugamycin – Producing Strain by the Agar Piece Method and Prototroph Method. Folia Microb. 16:218-224.
Crossref

 
 

Jin-long C, Shun-Xing G, Pei-gen X (2011). Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J. Zhejiang Univ. Sci. B. 12:385-392.
Crossref

 
 

Kim HK, Thammavongsa V, Schneewind O (2012). Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr. Opin. Microbiol. 15(1):92-99.
Crossref

 
 

Kirby WMMAW, Bauer J C, Sherris MT. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45:493-499.

 
 

Kumar CG, Mongolla P, Joseph J (2010). Antimicrobial activity from the extracts of fungal isolates of soil and dung samples from Kaziranga National Park, Assam, India. J. Med. Mycol. 20:283-289.
Crossref

 
 

Kumar U, Singh A, Sivakumar T (2011). Isolation and screening of endophytic actinomycetes from different parts of Emblica officinalis. Pharm. Sci. 2:423-34.

 
 

Kusari S, Hertweck C, Spiteller M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 19:792-798.
Crossref

 
 

Li H, Huang H, Shao C (2011). Cytotoxic Norsesquiterpene Peroxides from the Endophytic Fungus Talaromyces flavus Isolated from the Mangrove Plant Sonneratia apetala. J. Nat. Prod. 74:1230-1235.
Crossref

 
 

Luo J, Walsh E, Naik A (2014). Temperate Pine Barrens and Tropical Rain Forests Are Both Rich in Undescribed Fungi. PLoS ONE 9:e103753.
Crossref

 
 

Lyra FDA, Gonçalves LO, Coelho JSB (1964). Ciclamicina e ciclacidina, dois novos antibióticos produzidos pelo Streptomyces capoamus nov. sp. Anais Acad. Bras. Ciênc. 36:323-334.

 
 

Matsuo AL, Figueiredo CR, Arruda DC (2011). α-Pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 411:449-454.
Crossref

 
 

McInroy JA, Kloepper JWA. (1995). Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant soil 173:337-342.
Crossref

 
 

Meng L, Sun P, Tang H (2011). Endophytic fungus Penicillium chrysogenum, a new source of hypocrellins. Biochem. Syst. Ecol. 39: 163-165.
Crossref

 
 

Metz H (1961). Thin-layer chromatography for rapid assays of enzymic steroid transformations. Naturwissenschaften, 48:569-570.
Crossref

 
 

Orlandelli RC, Almeida TT, Alberto RN (2015). Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz. J. Microbiol. 46:359-366.
Crossref

 
 

Paes ARM, Câmara JT, Santos DAS (2014). Epidemiological study of cross infection in Intensive Care Unit. Rev. Enf. Piaui 3:10-17.

 
 

Pereira EM, Gomes RT, Freire NR et al. (2011). In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Planta Med. 77:401-404.
Crossref

 
 

Pharamat T, Palaga T, Piapukiew J et al. (2013). Antimicrobial and anticancer activities of endophytic fungi from Mitrajyna javanica Koord and Val. Afr. J. Microbiol. Res. 7:5565-5572.
Crossref

 
 

Pinheiro EAA, Carvalho JM, Santos DCP (2013). Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Nat. Prod. Res. 27:1633-1638.
Crossref

 
 

Pusz W, Pląskowska E, Yildirim I (2015). Fungi occurring on the plants of the genus Amaranthus L. Turk. J. Bot. 39:147-161.
Crossref

 
 

Queires LC, Crépin M, Vacherot F (2013). In vitro effects of polyphenols extracted from the aroeira plant (Schinus terebinthifolius raddi) on the growth of prostate cancer cells (LNCaP, PC-3 AND DU145). Braz. J. Med. Hum. Health 1:71-82.
Crossref

 
 

Robertson EAH, Cartwright RA, Oldschool M (1956). Phenolic substances of manufactured tea. I. fraction and paper chromatography of water-soluble substances. J. Sci. Food Agric. 8: 72-80.
Crossref

 
 

Rocha IV, Ferraz PD, Farias TG, Oliveira SR (2015). Resistance of bacteria isolated from equipment in an Intensive Care Unit. Acta Paul Enf, 5: 433-439.
Crossref

 
 

Rodrigues IMC, Souza FAPS, Ferreira FA. (2009). Estudo fitoquímico de Senna alata por duas metodologias. Planta Daninha, 27:507-513.
Crossref

 
 

Santiago IF, Alves TM, Rabello A et al. (2012). Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95-103.
Crossref

 
 

Sharma OP, Darwra RK. (1991). Thin layer chromatographic separations of lantadenes, the pentacyclic triterpenoids from lantana (Lantana camara) plant. J. Chromat. 587:351-354.
Crossref

 
 

Shen S, Ding R, Zhou Y et al. (2014). Immunomodulatory Effects of Polysaccharide from Marine Fungus Phoma sp. YS4108 on T Cells and Dendritic Cells. Mediators Inflamm. 13p.

 
 

Shen X, Zheng D, Gao J (2012). Isolation and evaluation of endophytic fungi with antimicrobial ability from Phyllostachys edulis. Bangladesh J. Pharmacol. 7:249-257.
Crossref

 
 

Shrestha P, Szaro TM, Bruns TD (2011). Systematic Search for Cultivatable Fungi That Best Deconstruct Cell Walls of Miscanthus and Sugarcane in the Field. Appl. Environ. Microbiol. 77:5490-5504.
Crossref

 
 

Shukla S, Shukla H, Pandey AK. (2014). Screening of some phytopathogenic fungi for their antimicrobial potential. W J Pharm. Pharmaceut Sci, 3:2478-2494.

 
 

Silva AB, Silva T, Franco ES et al (2010). Antibacterial activity, chemical composition, and cytotoxicity of leaf's essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz. J. Microbiol. 41:158-163.
Crossref

 
 

Siqueira VM, Conti R, Araújo JM (2011). Endophytic fungi from the medicinal plant Lippia sides Cham. and their antimicrobial activity. Symbiosis, 53:89-95.
Crossref

 
 

Strobel G, Sanjay KS, Riyaz-Ul-Hassan S (2011). An endophytic/ pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett, 320:87-94.
Crossref

 
 

Tayung K, Sarkar M, Baruah P (2012). Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials. Braz. Arch. Biol. Technol. 55:653-660.
Crossref

 
 

Wagner H, Bladt S (1996). Plant drug analysis – A thin layer chromatography atlas. Munich, Germany: Springer.

 
 

Wang Y, Dai C-C. (2011). Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol, 61:207-215.
Crossref

 
 

White TJ, Bruns T, Lee S (1990). Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: PCR Protocols. A Guide to Methods and Applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). San Diego: Academic, pp.315-322.
Crossref

 
 

Woodford N, Livermore DM (2009). Infections caused by Gram-positive bacteria: a review of the global challenge. J. Infect. 59:S4-S16.
Crossref

 
 

Zhang H, Xiong Y, Zhao H et al. (2013a). An antimicrobial compound from the endophytic fungus Phoma sp. isolated from the medicinal plant Taraxacum mongolicum. J. Taiwan Inst. Chem. Eng. 44:177-181.
Crossref

 
 

Zhang X, Ding R, Zhou Y et al. (2013b). Toll-Like Receptor 2 and Toll-Like Receptor 4-Dependent Activation of B Cells by a Polysaccharide from Marine Fungus Phoma sp. YS4108. PLoS ONE 3:e60781.
Crossref

 

 


APA da Silva, G. B. P. G., Silvino, K. F., Bezerra, J. D. P., de Farias, T. G. S., de Araújo, J. M., & Stamford, T. L. M. (2017). Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae). African Journal of Microbiology Research, 11(1), 1-7.
Chicago Gustavo Bartolomeu Pedrosa Gomes da Silva, Karine Fagundes Silvino, Jadson Diogo Pereira Bezerra, Tha&isa Gabriela Silva de Farias, Janete Magali de Ara&ujo and Tânia L&ucia Montenegro Stamford. "Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae)." African Journal of Microbiology Research 11, no. 1 (2017): 1-7.
MLA Gustavo Bartolomeu Pedrosa Gomes da Silva, et al. "Antimicrobial activity of Phoma sp. URM 7221: An endophyte from Schinus terebinthifolius Raddi (Anacardiaceae)." African Journal of Microbiology Research 11.1 (2017): 1-7.
   
DOI 10.5897/AJMR2016.8326
URL http://academicjournals.org/journal/AJMR/article-abstract/BC023AB62246

Subscription Form