African Journal of Microbiology Research
Subscribe to AJMR
Full Name*
Email Address*

Article Number - F9A57DE55834

Vol.12(4), pp. 73-85 , January 2018
ISSN: 1996-0808

 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia

Negash Demissie
  • Negash Demissie
  • Soil Microbiology Department, Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Ethiopia.
  • Google Scholar
Tulu Degefu
  • Tulu Degefu
  • College of Natural and Computational Sciences, Department of Biology, Hawassa University, P. O. Box 5, Hawassa, Ethiopia.
  • Google Scholar
Alazar Ergena
  • Alazar Ergena
  • College of Natural and Computational Sciences, Department of Biology, Hawassa University, P. O. Box 5, Hawassa, Ethiopia.
  • Google Scholar
Chris Ojiewo
  • Chris Ojiewo
  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT-Ethiopia), Addis-Ababa, Ethiopia.
  • Google Scholar

 Received: 17 November 2017  Accepted: 22 December 2017  Published: 28 January 2018

Copyright © 2018 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0

Fifty endophytic bacteria recovered from surface sterilized root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia were authenticated using three chickpea cultivars (Natoli, ICC-4918 and ICC-5003). These isolates were characterized based on morphological and phenotypic traits. The test isolates were divided into two: bacteria nodulating chickpea (27 isolates, Group I] and endophytic non-nodulating bacteria (23 isolates, Group II]. Twenty isolates from Group I were able to re-infect and form symbiosis with two chickpea cultivars, while the remaining seven isolates re-infected only one chickpea cultivar. The result demonstrated that: a number of the tested isolates were able to produce siderophore, showed variations in terms of their resistance to different antibiotics, grew at pH ranging between 5 and 9.5, tolerated salt concentration as high as 2.5% and grew at a temperature as high as 40ºC, indicating the existence of a wide physiological diversity among themselves. Dendrogram construction indicated the existence of four clusters when 78% similarity level was used as cut-off point. Such diversity among the tested isolates showed the presence of diverse rhizobial and non-rhizobial isolates within chickpea nodules. Further investigation aimed at identifying the types of endophytic bacteria, their invading mechanism, and varietal preferences for nodule formation is recommended.

Key words: BNF, Chickpea, Endophytic, Mesorhizobium, non-nodulating, rhizobia.


Ahmed S, Ayalew M (2006). Chickpea, lentil, grass pea, fenugreek and lupine disease research in Ethiopia. Food and forage legumes of Ethiopia progress and prospects. ICARDA, Addis Ababa, Ethiopia, 215-220.


Alikhani AH, Yakhchali B (2010). Potential use of Iranian rhizobial strains as plant growth-promoting rhizobacteria (PGPR) and effects of selected strains on growth characteristics of wheat, corn and alfalfa. Desert. 14:27-35.


Alikhani HA, Saleh-Rastin N, Antoun H (2006). Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil. 287:35-41.


Amarger N, Macheret V, Laguerre G (1997). Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int. J. Syst. Evol. Microbiol. 47:996-1006.


Anbessa Y, Bejiga G (2002). Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genet. Resour. Crop Evol. 49:557-564.


Aserse AA, Rasanen LA, Aseffa F, Hailemariam A, Lindstrom K (2013). Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl. Microbiol. Biotechnol. 97:10117-34.


Bai Y, D'Aoust F, Smith DL, Driscoll BT (2002). Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48:230-238.


Bejiga G, Daba K (2006). Breeding chickpea for wide adaptation. In: Kemal et al (eds) Food and Forage legumes of Ethiopia progress and prospects, ICARDA, Addis Ababa, Ethiopia. pp. 59-66.


Berrada H, Nouioui I, Houssaini MI, Gtari M, Benbrahim KF (2012). Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. Afr. J. Microbiol. Res. 6:5314-5324.


Bhagat D, Sharma P, Sirari A, Kumawat KC (2014). Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int. J. Curr. Microbiol. Appl. Sci. 3:923-930.


Bhatt PV, Vyas BRM (2014). Screening and characterization of plant growth and health promoting Rhizobacteria. Int. J. Curr. Microbiol. App. Sci 3:139-155.


Bouhmouch I, Brhada F, Filali-Maltouf A, Aurag J (2001). Selection of osmotolerant and effective strains of Rhizobiaceae for inoculation of common bean (Phaseolus vulgaris) in Moroccan saline soils. Agronomie 21:591-599.


Bric JM, Bostock RM, Silverstone SE (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57:535-538.


Brockwell J, Pilka A, Holliday RA (1991). Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils in central New South Wales. Anim. Prod. Sci. 31: 211-219.


Cappuccino JG, Sherman N (2008). "Microbiology: A laboratory manual, 6th edition. pp. 491-496.


Chakrabarti SK, Mishra AK, Chakrabartty PK (1986). Metabolism of glucose and gluconate in fast-and slow-growing Rhizobia. Phytochem. 26:85-87.


CSA (2014). Annual Statistical Abstract (compilation from 2007 - 2014). 



de Lajudie P, Willems A, Nick G, Mohamed SH, Torck U, Coopman R, Filali-Maltouf A, Kersters K, Dreyfus B, Lindström K (1999). Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst. Appl. Microbiol. 22:119-132.


Degefu T, Wolde-meskel E, Frostegard A (2013). Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia. Syst. Appl. Microbiol. 36:272-80.


Etesami H, Alikhani HA, Akbari AA (2009). Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl. Sci. J. 6:1576-1584.


Giller KE, Franke AC, Abaidoo R, Baijukya F, Bala A, Boahen S, Dashiell K, Kantengwa S, Sanginga J-M, Sanginga N, Simmons AJ, Turner A, de Wolf J, Woomer P, Vanlauwe B (2013). N2Africa: Putting nitrogen fixation to work for smallholder farmers in Africa. In: Vanlauwe, B., van Asten, P.J.A., Blomme, G. (Eds.), Agro-ecological Intensification of Agricultural Systems in the African Highlands. Routledge, London. pp. 156-174.


Graham PH (1992). Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can. J. Microbiol. 38:475-484.


Gurtler V, Wilson VA, Mayall BC (1991). Classification of medically important clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA. Microbiology 137:2673-2679.


Hameed S, Yasmin S, Malik KA, Zafar Y, Hafeez FY (2004). Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biol. Fertil. Soils. 39:179-185.


Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI (1998). Identification and characterization of salt-and thermo-tolerant Leucaena-nodulating Rhizobium strains. Biol. Fertil. Soils. 27:335-341.


Hols P, Ferain T, Garmyn D, Bernard N, Delcour J (1994). Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression. Appl. Environ. Microbiol. 60:1401-1413.


Hoque MS, Broadhurst LM, Thrall PH (2011). Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int. J. Syst. Evol. Microbiol. 61:299-309.


Hungria M, Vargas MAT (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 65:151-164.


Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Evol. Microbiol. 47:895-898.


Jida M, Assefa F (2012). Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea (Cicer arietinum L.) growing areas of Ethiopia. African Journal of Biotechnology 11:7483-7493.


Keneni A, Prabu PC, Assefa F (2010). Characterization of acid and salt tolerant rhizobial strains isolated from faba bean fields of Wollo, Northern Ethiopia. J. Agric. Sci. Tech. 12:365-376.


Keneni G, Bekele E, Getu E, Imtiaz M, Dagne K, Asefa F (2011a). Characterization of Ethiopian Chickpea (Cicer arietinum L.) Germplasm Accessions for Response to Infestation by Adzuki Bean Beetle (Callosobruchus chinensis L.) I. Performance Evaluation. Ethiop. J. Agric. Sci. 21:65-83.


Keneni G, Bekele E, Imtiaz M, Getu E, Dagne K, Assefa F (2011b). Breeding chickpea (Cicer arietnum [Fabaceae]) for better seed quality inadvertently increased susceptibility to adzuki bean beetle (Callosobruchus chinensis [Coleoptera: Bruchidae]). Int. J. Trop. Insect Sci. 31:249-261.


Kimurto PK, Towett BK, Mulwa RS, Njogu N, Jeptanui LJ, Rao GN, Silim S, Kaloki P, Korir P, Macharia JK (2013). Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol. Mediterr. 52:212-221.


Kuklinsky‐Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani‐Kleiner AA, Azevedo JL (2004). Isolation and characterization of soybean‐associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6:1244-1251.


Küçük Ç, Kivanc M (2008). Preliminary characterization of Rhizobium strains isolated from chickpea nodules. Afr. J. Biotechnol. 7: 772-775.


Küçük Ç, Kivanç M, Kinaci E (2006). Characterization of Rhizobium sp. isolated from bean. Turkish J. Biol. 30: 127-132.


L'Taief B, Sifi B, Gtari M, Zaman-Allah M, Lachaâl M (2007). Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Can. J. Microbiol. 53:427-434.


Liu J, Wang ET, Chen WX (2005). Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst. Appl. Microbiol. 28:465-477.


Maâtallah J, Berraho EB, Sanjuan J, Lluch C (2002). Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccan soils. Agronomie 22:321-329.


Mahdhi M, de Lajudie P, Mars M (2008). Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils. Can. J. Microbiol. 54:209-217.


Nour SM, Cleyet-Marel J-C, Normand P, Fernandez MP (1995). Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int. J. Syst. Evol. Microbiol. 45:640-648.


Okon Y, Kapulnik Y (1986). Development and function of Azospirillum-inoculated roots. Plant Soil. 90:3-16.


Ozawa T, Ohwaki A, Okumura K (2003). Isolation and Characterization of Diazotrophic Bacteria from the Surface-Sterilized Roots of Some Legumes. Sci. Rep. Grad. Sch. Agric. & Biol. Sci. Osaka. Pref. Univ. 55:29-36


Raychaudhuri N, Das SK, Chakrabartty PK (2005). Symbiotic effectiveness of a siderophore overproducing mutant of Mesorhizobium ciceri. Polish J. Microbiol. 54:37-41.


Schwyn B, Neilands JB (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56.


Shiferaw B, Teklewold H (2007). Structure and functioning of chickpea markets in Ethiopia: Evidence based on analyses of value chains linking smallholders and markets. ILRI, Addis Ababa, Ethiopia. pp. 1-55.


Somasegaran P, Hoben H (1994). Methods in Legume-rhizobium technology; NIFTAL project. Springer-Verlag, Heidelberg, Germany.


Sridevi M, Mallaiah KV (2007). Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afric. J. Microbiol. Res. 1:125-128.


Tena W, Wolde-Meskel E, Degefu T, Walley F (2017). Genetic and phenotypic diversity of rhizobia nodulating Chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia. Can. J. Microbiol. 63:690-707.


Trivedi P, Spann T, Wang N (2011). Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 62:324-336.


Vincent JM (1970). A manual for the practical study of the root-nodule bacteria. A manual for the practical study of the root-nodule bacteria.


Wani PA, Khan MS (2013). Isolation of Multiple Metal and Antibiotic Resistant Mesorhizobium species and Their Plant Growth Promoting Activity. Res. J. Microbiol. 8:25-35.


Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63:968-989.


Zhang X, Harper R, Karsisto M, Lindström K (1991). Diversity of Rhizobium bacteria isolatedfrom the root nodules of leguminous trees. Int. J. Syst. Evol. Microbiol. 41:104-113.


APA Demissie, N., Degefu, T., Ergena, A., & Ojiewo, C. (2018). Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia. African Journal of Microbiology Research, 12(4), 73-85.
Chicago Negash Demissie, Tulu Degefu, Alazar Ergena and Chris Ojiewo  . "Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia." African Journal of Microbiology Research 12, no. 4 (2018): 73-85.
MLA Negash Demissie, et al. "Phenotypic characteristics of rhizobial and non-rhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia." African Journal of Microbiology Research 12.4 (2018): 73-85.

Subscription Form