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Table 1. Morphological characteristics of selected fungi and their response to GOX and CAT qualitative tests. 
 

Strain Colonia  Vesicles Hyphae Phialides Conidia 
GOX 
test 

CAT 
test 

ASPN 
1.1 

Black and granular 
texture 

Round 
Septate 
hyaline 

Primary densely 
covering vesicle 

Dark brown, 
globular, smooth, 
radially 

+ + 

        

ASPN 3 
Black and cottony 
texture 

Round 
Septate 
hyaline 

Primary covering the 
entire vesicle and 
racemes 

Round and radiated, 
hyaline 

+ + 

        

ASPN 4 
Black and cottony 
texture 

Round 
No septate 
hyaline 

Covering the entire 
vesicle 

Globular, dark brown + + 
        

ASPN 5 
Brown and cottony 
texture 

Round 
No septate 
hyaline 

Primary and secondary 
covering the entire 
vesicle 

Globular, radial-
shaped, dark brown 

+ + 

        

ASPN 7´ 
Dark brown, cottony 
texture, little sporulation 

Round 
Septate 
hyaline 

Primary covering the 
entire vesicle 

Globular, dark brown, 
with conidia exiting 
the conidiophore 

+ + 

        

ASPN 12 
Black and granular 
texture 

Round 
No septate 
hyaline 

Primary  Globular, dark brown + + 

 
 
 

characteristics has been reported (Cruz-Hernández et al., 
2005; Cruz-Hernández et al., 2006; Flores-Gallegos et 
al., 2012). In the present study, the strains of Aspergillus 
niger isolated from the Mexican semi-desert were 
screened for their ability to excrete extracellular enzymes 
catalase (CAT, H2O2: H2O2 oxidoreductase, EC 1.11.1.6) 
and glucose oxidase (GOX, β-D-glucose: oxygen-1 
oxidoreductase, EC 1.1.3.4).  

Both enzymes have various applications in industry, as 
well as in analytical chemistry (Tzonka et al., 2006; Wang 
et al., 2008; Singh and Verma, 2013). For example, they 
are applied as additives for food preservation, because 
they promote the elimination of residual oxygen after 
packaging. The fungus A. niger is a widely used source 
for obtaining GOX and CAT, since it has many 
biotechnological advantages, it is not pathogenic and can 
grow with a wide variety of nutrients (Schuster et al., 
2002; Cruz-Hernández et al., 2006). This is one of the 
reasons to study this type of fungi. Furthermore, to our 
knowledge, the production of these enzymes by 
xerophytic fungi was not reported previously.  

To characterize studied fungi, we applied traditional 
methods involving morphological and microscopical 
characterization, as well as rDNA identification for the 
strain with highest activities (Arnaud et al., 2012). The 
operational properties of enzymes were characterized 
using partially purified extracellular extract. Ultrafiltration 
with a semi-permeable membrane with pore sizes 
enough to permit movement of molecules smaller than 
100 kDa and to prevent the passage of proteins with 
higher molecular weight was applied to this. This method 
used centrifugation to induce the movement of water and 
small molecules through the membrane under centrifugal 
force. This method is fast, allows separating one part of 

proteins, estimate molecular weight of enzymes, and results 
in concentration of the protein sample (Tauro et al., 2012). 

The goals of the present study are: 1) to screen the 
collection of xerophytic A. niger strains for an extra-
cellular catalase (CAT) and glucose oxidase (GOX) 
production; 2) partial purification of enzymes from one 
strain exhibiting greater enzymatic activities, and 3) to 
characterize some operational properties of both 
enzymes.   
 
 
MATERIALS AND METHODS 
 

Strains morphological characterization  
 

Fungal strains used for the present study were obtained from Fungi 
Collection of Food Research Department, School of Chemistry, 
Autonomous University of Coahuila (Saltillo, Mexico). These 
cultures were originally isolated from soil or stems of semi-desert 
plants from semi-arid zone of Coahuila State (Mexico) and stored 
on potato dextrose agar (PDA) slants. The fungal strains were 
further transferred/sub-cultured by growing on freshly prepared 
PDA plates, as well as under slide culture conditions (Sarma et al., 
2002). Morphological and microscopic characteristics described in 
Table 1 were noted to verify A. niger properties. 
 
 
Screening for glucose oxidase and catalase production in 
solid-state fermentation 
 

To select the fungi with glucose oxidase production, the fungi were 
grown on PDA medium and applied to solid diagnostic test, which 
allowed estimating the glucose oxidase activity by the presence of 
the brown zones of o-dianisidine (100 g/L) oxidation developed 
around the colonies in the presence of horseradish peroxidase type 
VI (15 U) (Fiedurek and Gromada, 2000).   

Catalase activity was screened by applying a drop of 30% (v/v) 
H2O2 with a syringe to the edge of each colony. Catalase producing 
strains were selected due to appearance of oxygen bubbles (Kim et 
al., 1994). 
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Screening for catalase and glucose oxidase production in 
submerged fermentation 
 
Promising A. niger strains were grown in submerged mode at 30°C 
and 320 rpm in the liquid medium (Fiedurek and Gromada, 2000), 
which contained (g/L): glucose, 80; peptone (type I, Sigma), 3; 
CaCO3, 35; (NH4)2HPO4, 0.388; K2HPO4, 0.188;  and  MgSO4∙7H2O, 
0.156. This medium was inoculated to a density of 105 spores/mL. 
The enzymatic activities and protein concentration were monitored 
for 60 h after liquid aliquot filtration. Fungal mycelium grown for 60 
h was collected by filtration, washed, dried at 90°C to a constant 
weight. The culture filtrate was used for the respective assays of 
enzymes partial purification and characterization. 

Catalase was assayed by spectrophotometric measurement of 
the decomposition of H2O2, (Zeng et al., 2010). Sample (0.5 mL of 
culture medium) was added to 0.95 mL of H2O2 (0.05 M in 
phosphate buffer 0.02 M, pH 7). After stirring, the decrease in 
absorbance at 240 nm was measured for 3 min (Cary-50 UV/VIS 
Spectrometer). The initial rate of decomposition was determined 
after fitting the kinetic curves. The absorption coefficient at 240 nm 
for H2O2 was taken to be 40 M-1 cm-1. One unit of catalase activity 
was defined as the amount of enzyme required to decompose 1.0 
µmol of H2O2/min at 25°C.  

Glucose oxidase activity was determined in aliquots of culture 
liquids by using a coupled o-dianisidine-peroxidase reaction (Singh 
and Verma, 2013). One unit (U) of enzyme activity was defined as 
the amount that produces 1 µmol H2O2/min at 30°C. The reaction 
mixture contained 0.6 mL of 0.01 M glucose, 0.33 mL of o-
dianisidine (0.16 g/L), 0.12 mL of horseradish peroxidase type VI at 
20 µg /mL (Sigma-Aldrich). All reactants were previously dissolved 
in 0.02 M phosphate buffer at pH 6. The reaction was initiated by 
addition of 0.12 mL of the extract containing the enzyme. The 
absorbance increase was detected continuously in Cintra-20 
spectrophotometer at 436 nm for 105 s. The activity was calculated 
from the linear portion of the curve using a molar extinction 
coefficient of 8300 M-1min-1. Protein concentrations were estimated 
by Bradford method using bovine serum albumin as the standard.  
 
 
Confirmation of fungal strain by rDNA identification 
 
Fungal DNA, which was selected due to greater enzymatic 
activities, was isolated using the protocol previously reported by 
Barth and Gaillardin (1996). In particular, chopping of fungal mat 
(0.4 g on dry mass basis) was done using pestle and mortar with 
liquid nitrogen. Chopped material was transferred to 50 mL 
centrifuge tube containing 5 mL of extraction buffer TES (100 mM 
Tris-HCl of pH 8.0, 20 mM EDTA, and 0.8 % SDS) along with 2.5 
mL of 5 M sodium acetate of pH 5.2 and 5 M NaCl. Centrifuge tube 
was placed at -20°C for 20 min. After centrifugation, done at 14800 
rpm for 20 min at 4°C, supernatant was transferred to a new tube 
and an equal volume of isopropanol was added to the tube. Pellet 
DNA was obtained after 5 min centrifugation at the same conditions 
as earlier. Pellet of DNA was washed thrice using ethanol. After 
washing, the pellet was dissolved in 0.05 mL of 0.1X TE buffer (1 
mM Tris-HCl, 0.1 mM EDTA, pH 8). Electrophoresis was carried out 
at 100 V in 1% agarose gel with 1xTAE buffer (40 mM Tris, 20 mM 
acetic acid and 1 mM EDTA, pH 8) and ethidium bromide. The 
marker Hyperladder I (0.002 mL of the marker and 0.003 mL of TE 
buffer, pH 8.0) was used (Hovda et al., 2007; Rojas et al., 2008; 
Moreno-Dávila et al., 2010). The concentration of extracted DNA 
was checked on NanoDrop spectrophotometer using 0.001 mL of 
sample.  

PCR conditions and primers for amplification of 18S rDNA were 
used as reported by Melchers et al. (1994). The primers were nu-
SSU-0817-5´ (foward) (5’- TTAGCATGGAATAATRRAATAGGA-3’) 
and nu-SSU-1193-3´ (reverse) (5´- TCTGGACCTGGTGAGTTTCC 
-3´).  The PCR mixture consisted of 200 mM Tris-HCl pH 8.4, 2.5  

 
 
 
 
mM MgCl2, 0.25 mM dNTPs, 0.4 µM of each primer, 0.2 μg of DNA 
and 1.0 U of Taq polymerase. The PCR system (Biometra®) was 
used for amplification. Initial denaturation, annealing and extension 
steps were performed at 95, 57 and 72°C, respectively. Analysis of 
the PCR products was performed by electrophoresis on 1.8% 
agarose gels using standard conditions and Hyperladder V marker. 

The 18S rDNA product was extracted from agarose gel with the 
help of gel extraction kit (Fermentas). The PCR product was sent to 
Macrogen (USA) for sequencing. The alignment of the sequences 
was performed using the software BioEdit and taxonomic 
classification, as well as determination of the nearest neighbors by 
the NCBI database: microbes. Alignments (BLAST) were performed 
with each of the sequences obtained from the amplified 422 bp 
using the database "fungi-genomes" NCBI.  
 
 
Partial enzymes purification 
 
The enzymatic extracts obtained by submerged fermentation were 
filtered through Whatman No. 41 filter under vacuum. Then they 
were concentrated on Amicon Ultra-15 units (Millipore) containing 
the membrane for separation of 100 kDa proteins. The procedure 
was performed as follows: 15 mL of crude extract were placed in 
Amicon tube, which was centrifuged at 10,000 rpm, 4°C for 15 min. 
The extract obtained on the filter was separated to be applied in the 
subsequent assays. The protein concentration was detected by the 
Bradford method. The GOX and CAT activities were evaluated in all 
recovered samples as described above.  
 
 
Partial enzymes characterization  
 
Effect of pH on glucose oxidase and catalase activities was 
determined by assaying the enzymes as mentioned before with the 
difference that the activity was determined at different pH ranging 
from 1-8 using various buffer solutions as described by Tzonka et 
al. (2006). Temperatures ranging from 35-65°C, activation energy 
was determined from the Arrhenius plot. Thermal stability was 
evaluated applying activity assays, the enzymes pre-incubated at 
50°C before activity measurements. To determine the kinetic 
parameters (Vmax and Km), the enzymatic reactions were carried out 
using different substrate (peroxide or glucose, respectively for 
catalase and glucose oxidase) at pH 7 and 6, respectively. The 
data was analyzed according to Lineweaver-Burk plot. 
 
 
RESULTS 
 
Different fungal strains were tested to select the fungi 
with characteristics of A. niger, as well as GOX and CAT 
production. The 6 strains of fungi that met the morpho-
logical characteristics of A. niger (Table 1) were selected 
due to the positive response on GOX and CAT qualitative 
tests.  

Considering the evidence of GOX and CAT activity, 
submerged fermentation was carried out using selected 
strains. Kinetic data corresponding to the activities of 
both extracellular enzymes detected during this assay are 
shown in Figures 1 and 2. Both activities were detected 
from 12 h of fermentation, and were characterized by the 
presence of maximum values at the time different for 
each strain (Figures 1, 2 and Table 2).  

The relation between catalase and glucose oxidase is 
significant for fungi due to hydrogen peroxide production  
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(Fiedurek and Gromada, 2000). However, these authors 
studied intracellular enzymes (Fiedurek and Gromada, 
1997), while in the present study, the xerophytic A. niger 
strains, which produced extracellular GOX and CAT 
(Table 2), were investigated. The literature data 
(Chaouche et al., 2005) confirmed that in different fungal 
cultures, the excretion of catalase into the submerged 
culture began around 20 h after inoculation and 
increased as the time progressed, moreover the 
excretion was preceded by the intracellular catalase 
activity. GOX production from A. niger, for which 
excretion kinetics have been reported (Pluschkell et al., 
1996), showed the presence of a signal peptide 
confirming that the glucose oxidase (GOD) is actively 
secreted in the culture medium. Chaouche et al. (2005) 
suggested that the intra- and extracellular catalase 
production was related neither to the fungal biomass nor 
to the size of pellet. However, it was demonstrated that 
this production may be directly related to the external 
layer of the pellet and precisely to the morphology of the 
hyphae in this region, and that secretion of proteins is 
primarily associated with the apical and subapical 
regions, called active region (Wongwicharn et al., 1999; 
Ramos et al., 2011). 

As was mentioned above, the strain ASPN 1.1 was 
selected due to its greater activities levels in comparison 
with other studied strains. As compared to results 
obtained in the present study (Figures 1 to 4); in various 
previous reports, the A. niger strains produced 
extracellular GOX and CAT (Ojeda et al., 2011; Zoghbia 
et al., 2008) with lower activity, higher protein 
concentration and higher weight of generated biomass.  

The rDNA identification (Figure 5) confirmed that the 
selected strain is A. niger. Genomic DNA sequence of A. 
niger strain CBS 513.88, its annotation and an initial gene 
expression study as well as genetic maps are described 
by Pel et al. (2007) and Arnaud et al. (2012). 

The enzymes partial purification (Table 3) 
demonstrated that the molecular weight of GOX and CAT 
is higher than 100 kDa, because greatest part of both 
enzymes was concentrated in the filter with pores 
allowing separation of proteins with lower molecular 
weight. Various literature data report that molecular 
weight of GOX produced by fungi is around 160 kDa, 
while for CAT, is 210-280 kDa (Kirman and Gaetani, 
1984; Singh and Verma, 2013).  

The optimum pH of GOX (Figure 6) is slightly higher 
than that reported for other glucose oxidases from A. 
niger, while for CAT, is similar or slightly lower than the 
one reported for enzymes from different microbiological 
sources (Table 4). The effect of pH on enzyme activity is 
related to the ionization of essential active site amino acid 
residues, which participate in substrate binding and 
catalysis. Our results is consistent with those reported by 
Weibel and Bright (1971), who defined that GOX is 
working in the pH range of 4-7, and by Chandrashekar 
(2011), who demonstrated that pH optimum of catalase 

 
 
 
 
form Aspergillus sp. is equal to 6.  

The plot (Figure 7) describes the effect of temperature 
on CAT and GOX activities; it is obvious that both 
enzymes had a single conformation up to transition 
temperature. The optimum temperatures are superior to 
the enzymes from various other sources (Table 4). This 
becomes more evident when comparing with bacterial 
catalase, as well as with various fungal GOX (Table 4). 
However, the Ea values are greater than that reported for 
enzymes from some sources that may be related to 
difference of enzymes structures.  

Regarding properties of biotechnological relevance 
(Figure 8), the GOX of A. niger ASPN 1.1 exhibited a 
high affinity for D-glucose as it has low Km value for the 
substrate as compared to a high Km value of enzymes 
isolated from the A. niger reported earlier (Table 4). 
However, the Km value quantified for CAT is higher in 
various cases than reported for enzymes from alternative 
sources (Table 4). Other important characteristic of 
studied enzymes is their high thermostability that is 
appreciated in lower values of inactivation constant and 
higher half-life time (Figure 9 and Table 4). The 
advantage that CAT from A. niger ASPN 1.1 has in 
comparison with enzymes from some bacterial sources 
(Table 4) is evident. High substrate affinity and specificity, 
in addition to its long-term stability at relatively high 
temperature, proved enzymes of A.  niger ASPN 1.1 as a 
suitable biocatalyst for wide applications.  

Thus, in the present study, different xerophytic A. niger 
strains were assayed for the presence of GOX and CAT 
activities. The strain with higher activity was selected to 
confirm its identification and to be used for enzymes 
partial purification and characterization. Partial 
purification was performed by means of ultrafiltration with 
100 kDa filter. The enzymes showed high affinity for 
substrates, exhibited optimum catalytic activity at pH 6 
and optimum temperature at 50 and 45°C, for GOX and 
CAT, respectively. Both enzymes showed a high thermal 
stability at 50°C having a half-life of nearly 90 min. These 
properties suggest the use of catalase and glucose 
oxidase from xerophytic A. niger strain for wide industrial, 
clinical and biochemical applications. However, further 
studies are required to optimize the fermentation process 
and obtain higher enzymatic activities.  
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