African Journal of Pure and Applied Chemistry
Subscribe to AJPAC
Full Name*
Email Address*

Article Number - BEB18A566732


Vol.11(5), pp. 42-49 , November 2017
DOI: 10.5897/AJPAC2017.0739
ISSN: 1996-0840



Review

Atomic force microscopy studies on sulfur-, selenium- and tellurium-based metal chalcogenide thin films: A review



Ho Soonmin
  • Ho Soonmin
  • Centre for Green Chemistry and Applied Chemistry, INTI International University, Putra Nilai, 71800, Negeri Sembilan, Malaysia.
  • Google Scholar







 Received: 05 October 2017  Accepted: 16 November 2017  Published: 30 November 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Sulfur, selenium and tellurium based metal chalcogenide films have been prepared using various deposition methods. Investigation of morphological properties of the generated surface structures on chalcogenide thin films using atomic force microscopy technique was reported. The purpose of this work is to describe past important research findings that are related to atomic force microscopy technique.

 

Key words: Atomic force microscopy, surface roughness, film thickness, grain size.

Abdullah AH, Ho SM, Anuar K (2010). Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films. Av. Quim. 5:141-145.

 

Ahmad FI, Kailash CK, Takeshi M (2015). Gas separation membranes: polymeric and inorganic. (1st edition). Cham, Switzerland: Springer International Publishing AG.

 
 

Ahmad HJ, Anuar K, Ho SM, Tan WT, Abdul HA, Saravanan N (2010). Effect of solution concentration on MnS2 thin films deposited in a chemical bath. Kasetsart J. Nat. Sci. 44:446-453.

 
 

Alan C (2015). Biophysical Chemistry. (2nd edition). London, UK: RSC Publishing.

 
 

Al-Jassim MM, Yan Y, Moutinho HR, Romero MJ, Dhere RD, Jones KM (2001). TEM, AFM and cathodoluminescence characterization of CdTe thin films. Thin Solid Films 387:246-250.
Crossref

 
 

Amira H, Hager M (2017). Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing. J. Solid State Chem. 247:120-130.
Crossref

 
 

Ampere AT (2011). Advancements and challenges in development of atomic force microscopy for nanofabrication. Nanotoday 6:493-509.
Crossref

 
 

Anitha N, Anitha M, Amalraj L (2017). Influence of precursor solution volume on the properties of tin disulphide (SnS2) thin films prepared by nebulized spray pyrolysis technique. Optik- Int. J. Light Electron. Opt. 148:28-38.
Crossref

 
 

Anuar K, Ho SM, Loh YY, Saravanan N (2010). Structural and morphological characterization of chemical bath deposition of FeS thin films in the presence of sodium tartrate as a complexing agent. Silpakorn U. Sci. Technol. J. 4:36-42.

 
 

Bakiyaraj G, Dhanasekaran R (2013). Synthesis and characterization of flower-like ZnSe nanostructured thin films by chemical bath deposition (CBD) method. Appl. Nanosci. 3:125-131.
Crossref

 
 

Baldeschwieler JD, Eby RK, Gamble RC, O'Connor SD (1996). Gamble mode: resonance contact mode in atomic force microscopy. J. Vac. Sci. Technol. B. 14:852-855.
Crossref

 
 

Baykul MC, Balcioglu A (2000). AFM and SEM studies of CdS thin films produced by an ultrasonic spray pyrolysis method. Microelectro. Eng. 51-52: 703-713.
Crossref

 
 

Begona A, Marta R, Stephen LH, Xu X, Marisol M (2015). Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect. Electrochim Acta. 169:37-45.
Crossref

 
 

Bharat B, Harald F, Masahiko T (2008). Applied Scanning Probe Methods IX: Characterization. (1st edition). Berlin, Germany: Springer-Verlag GmbH.

 
 

Binnig G, Quate CF, Gerber C (1986). Atomic force microscope. Phys. Rev. Lett. 56:930-933.
Crossref

 
 

Bruno S, Khatib O (2008). Springer Handbook of robotics. (1st edition). Berlin, Germany: Springer-Verlag GmbH.

 
 

Bryant WR, John FH, Roger CB (1993). Physical methods of chemistry: Investigations of surfaces and interfaces –Part A. Volume IXA. (2nd edition). New York, USA: John Wiley & Sons Inc.

 
 

Camacho-Espinosa E, Rosendo E, Oliva AI, Diaz T, Carlos-Ramirez N, Juarez H, Garcia G, Pacio M (2014). Physical properties of sputtered CdTe thin films. Indian J. Appl. Res. 4:588- 593.
Crossref

 
 

Carter CB, David BW (2016). Transmission electron microscopy: diffraction, imaging and spectrometry (1st edition). Cham, Switzerland: Springer International Publishing AG.
Crossref0

 
 

Chen J, Dai Y, Ma Y, Dai X, Ho W, Xie M (2017). Ultrathin b-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale.
Crossref

 
 

Chen HM, Guo FQ, Zhang BH (2009). Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering. J. Semicond. 30: 
Crossref

 
 

Chen H, Fu S, Wu S, Wu H, Shih C (2016). Comparative study of self-constituent buffer layers (CuS, SnS, ZnS) for synthesis Cu2ZnSnS4 thin films. Mater. Lett. 169:126-130.
Crossref

 
 

Christopher G, Jonathan B, Tanya B, Robert C, Daniel C (2016). Rook's Textbook of Dermatology. (9th edition). Oxford, UK: John Wiley & Sons, Ltd.

 
 

Daniel T, Henry J, Mohanraj K, Sivakumar G (2016). Fabrication of ITO/Ag3SbS3/CdX(X=S,Se) thin film heterojunctions for photosensing applications. Mater. Res. Express. 3:
Crossref

 
 

David MW (2013). Reviews of Environmental Contamination and Toxicology, Volume 225. (1st edition). New York, USA: Springer.

 
 

Dedova T, Krunks M, Volobujeve O, Oja I (2005). ZnS thin films deposited by spray pyrolysis technique. Phys. Status Solidi C. 2:1161-1166.
Crossref

 
 

Deshmukh SG, Panchal AK, Vipul K (2017). Development of Cu3BiS3 thin films by chemical bath deposition route. J. Mater. Sci. Mater. Electron. 28:11926-11933.
Crossref

 
 

Dhandayuthapani T, Girish M, Sivakumar R, Sanjeeviraja C, Gopalakrishnan R (2017). Tuning the morphology of metastable MnS films by simple chemical bath deposition technique. Appl. Surf. Sci. 353:449-458.
Crossref

 
 

Dufrene Y (2011). Life at the nanoscale: atomic force microscopy of live cells (1st edition). Temasek, Singapore: Pan Stanford Publishing Pte Ltd.
Crossref

 
 

Enrico G, Ernst M (2015). Fundamentals of friction and wear on the nanoscale (2nd edition). Cham, Switzerland: Springer International Publishing AG.

 
 

Ersin Y, Suleyman K (2015). The effects of coumarin additive on the properties of CdS thin films grown by chemical bath deposition. Ceram. Int. 41:4726-4734.
Crossref

 
 

Fernando M, Gomez J, Jaime C, Arturo MB (2004). Atomic force microscopy contact, tapping and jumping modes for imaging biological samples in liquids. Phys. Rev. E 69:
Crossref

 
 

Fiorani D, Sberveglieri G (1994). Fundamental properties of nanostructured materials (1st edition). London, UK: World Scientific Publishing Co. Pte. Ltd.
Crossref

 
 

Franz JG, Calvin FQ (2006). Exploring the nanoworld with atomic force microscopy. Phys. Today 59: doi: http://dx.doi.org/10.1063/1.2435681.
Crossref

 
 

Gallardo MV, Ayala AM, Pal M, Jacome MA, Antonio T, Mathews NR (2016). Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity. Chem. Phys. Lett. 660:93-98.
Crossref

 
 

Garcia E, Garcia PG, Hernandez JG, Bon RR (2017). Non-toxic growth of CuxS thin films in alkaline medium by ammonia free chemical bath deposition. Optik-Int. J. Light Electron. Opt. 145:589-598.
Crossref

 
 

Georg EF, Georg S, Johannes HK, Tzvetan I, Katarina I (2006). Components for high speed atomic force microscopy. Ultramicroscopy 106:881-887.
Crossref

 
 

Gernot F, Henning B (2011). Surface and thin film analysis: a compendium of principles, instrumentation and applications. (2nd edition). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

 
 

Ghribi F, Mir L, Omri K, Djessas K (2016). Sputtered ZnS thin film from nanoparticles synthesized by hydrothermal route. Optik-Int. J. Light Electron. Opt. 127:3688-3692.
Crossref

 
 

Hajar F, Amir AY, Mehdi HS, Alimorad R, Asghar KZ (2016). Control of morphology and optical properties of PbS nanostructured thin films by deposition parameters: study of mechanism. J. Exp. Nanosci. 11:1416-1425.
Crossref

 
 

Ham SY, Jeon SY, Lee UK, Paeng KJ, Myung NS (2008). Photoelectrochemical deposition of CdZnSe thin films on the Se-modified Au electrode. Bull. Korean Chem. Soc. 29:939-942.
Crossref

 
 

Hegde SS, Kunjomana AG, Ramesh K, Chandrasekharan KA, Prashantha M (2011). Preparation and characterization of SnS thin films for solar cell application. Int. J. Soft Comput. Eng. 1:38-40.

 
 

Henriquez R, Vasquez C, Briones N, Munoz E, Leyton P, Dalchiele EA (2016). Single phase FeS2 (pyrite) thin films prepared by combined electro deposition and hydrothermal low temperature techniques. Int. J. Electrochem. Sci. 11:4966-4978.
Crossref

 
 

Ho SM, Anuar K, Tan WT, Abdul HA, Saravanan N (2010). Deposition and characterization of Cu4SnS4 thin films by chemical bath deposition method. Macedonian J. Chem. Chem. Eng. 29:97-103.

 
 

Ho SM, Anuar K, Tan W (2013). Thickness dependent characteristics of chemically deposited tin sulfide films. Universal J. Chem. 1:170-174.

 
 

Ho SM (2014). Atomic force microscopy investigation of the surface morphology of Ni3Pb2S2 thin films. Eur. J. Sci. Res. 125:475-480.

 
 

Ho SM, Anuar K, Rosli MY (2011). UV-Visible studies of chemical bath deposited NiSe thin films. Int. J. Chem. Res. 3:21-26.
Crossref

 
 

Huse NP, Dive AS, Gattu KP, Sharma R (2017). An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application. Mater. Sci. Semicond. Process. 67:62-68.
Crossref

 
 

Ibrahim YE, Tuba O, Ferhat B, Umit D (2009). Characterization of size quantized PbTe thin films synthesized by an electrochemical co-deposition method. Thin Solid Films 517:5419-5424.
Crossref

 
 

Jaroslaw D, Kash LM (2005). Atomic force microscopy in adhesion studies (1st edition). Florida, US: CRC Press.

 
 

Jelas H, Ho SM, Anuar K, Atan S (2011). Chemical bath deposition of SnS thin films: AFM, EDAX and UV-Visible characterization. Oriental J. Chem. 27:1375-1381.

 
 

John CHS (2013). High resolution electron microscopy. (4th edition). Oxford, UK: Oxford University Press.

 
 

Jozef V (2017). Nanoscale AFM and TEM observations of elementary dislocation mechanisms (1st edition). Cham, Switzerland: Springer International Publishing AG.

 
 

Jung MH, Park SH, Kim KH, Kim HS, Chang JH (2006). Characterization of MBE-grown ZnSe thin films by using photocurrent spectroscopy. J. Korean Phys. Soc. 49:890-893.

 
 

Kamble SS, Sikora A, Pawar ST, Maldar NN, Deshmukh LP (2015). Cobalt sulfide thin films: Chemical growth, reaction kinetics and microstructural analysis. J. Alloys Comps. 623:466-472.
Crossref

 
 

Kamoun N, Bouzouita H, Rezig B (2007). Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films 515:5949-5952.
Crossref

 
 

Kang J, Ryu I, Choe G, Kim G, Yim S (2017). Simple fabrication of nickel sulphide nanostructured electrode using alternate dip coating method and its supercapacitive properties. Int. J. Electrochem. Sci. 12:9588-9600.
Crossref

 
 

Kantorovich LN, Foster AS, Shluger AL, Stoneham AM (2000). Role of image forces in non-contact scanning force microscope images of ionic surfaces. Surf. Sci. 445:283-299.
Crossref

 
 

Kassim A, Ho SM, Tan WT, Shariff A, Saravanan N (2011). Chemical bath deposition of ZnSe thin films: SEM and XRD characterization. Eur. J. Appl. Sci. 3:113-116.

 
 

Kassim A, Ho SM, Tan WT, Monohorn S, Nagalingam S (2010). Effect of bath temperature on the chemical bath deposition of PbSe thin films. Kathmandu U. J. Sci. Eng. Technol. 6:126-132.
Crossref

 
 

Kelvin W, Tan T, Ho SM, Anuar K (2011). Influence of pH on the morphology properties of ZnSe thin films studied by atomic force microscopy. Eur. J. Sci. Res. 66:592-599.

 
 

Keyur SH, Patel KD, Solanki GK (2016). Structural and optical characterization of nano crystalline SnSe thin film. Int. J. Res. Inno. Appl. Sci. 1:6-11.

Khan MD, Malik MA, Akhtar J, Mlowe S, Revaprasadu N (2017). Phase pure deposition of flower like thin films by aerosol assisted chemical vapor deposition and solvent mediated structural transformation in copper sulfide nanostructures. Thin Solid Films 638:338-344.
Crossref

 

Kholoud MMAE, Eftaiha A, Abdulrhman A, Reda AAA (2010). Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3:135-140.
Crossref

 
 

Kiran D, Amit P, Sachin R, Rupali K, Manish S (2017). Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond. 38:
Crossref

 
 

Klapetek P, Ohlidal I, Franta D, Ramil A, Bonanni A, Stifter D (2003). Atomic force microscopy characterization of ZnTe epitaxial films. Acta Phys. Slovaca. 53:223-230.
Crossref

 
 

Last JA, Paul R, Paul FN, Christopher JM (2010). The applications of atomic force microscopy to vision science. Invest. Ophthalmol. Vis. Sci. 51:6083-6094.
Crossref

 
 

Laxman G, Yelameli RA, Sheela KR (2012). Correlation between the solution chemistry to observed properties of CdTe thin films prepared by CBD method. J. Mod. Phys. 3:1870-1877.
Crossref

 
 

Lehr C (2000). Lectin mediated drug delivery: The second generation of bioadhesives. J. Control. Release 65:19-29.
Crossref

 
 

Li J, Wu N (2014). Biosensors based on nanomaterials and nanodevices. (1st edition). Florida, USA: CRC Press.

 
 

Linda S, David TG, Gregory FM (2008). Polymer microscopy. (3rd edition). New York, USA: Springer.

 
 

Lisco F, Kaminski PM, Abbas A, Bowers JW, Claudio G, Losurdo M, Walls JM (2015). The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering. Thin Solid Films 582:323-327.
Crossref

 
 

Martin Y, Williams CC, Wickramasinghe HK (1987). Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. P 61.
Crossref

 
 

Maurice CF, Graeme JJ, Yoon R (2007). Froth flotation: a century of innovation. (1st edition). Colorado, USA: Society for mining, metallurgy and exploration Inc.

 
 

Meng X, Deng H, Sun L, Yang P, Chu J (2015). Sulfurization temperature dependence of the structural transition in Cu2FeSnS4 based thin films. Mater. Lett. 161:427-430.
Crossref

 
 

Mengui UA, Abramof E, Rappl PHO, Ueta AY (2006). Characterization of SnTe films grown by molecular beam epitaxy. Braz. J. Phys. 36:324-327.
Crossref

 
 

Mohd JH, Ho SM, Anuar K (2011). Preparation of thin films of copper sulfide by chemical bath deposition. Int. J. Pharm. Life Sci. 2:1190-1194.

 
 

Mukherjee A, Ghosh P, Fu M, Aboud A, Mitra P (2016a). Microstructural characterization of chemical bath deposition synthesized CdS thin films: Application as H2S sensor. Adv. Sci. Lett. 22:179-183.
Crossref

 
 

Mukherjee A, Ghosh P, Aboud AA, Mitra P (2016b). Influence of copper incorporation in CdS: Structural and morphological studies. Mater. Chem. Phys. 184:101-109.
Crossref

 
 

Murilo FG, Lucia HM (2016). Optical and structural study of electrodeposited zinc selenide thin films. J. Electroanal. Chem. 780:360-366.
Crossref

 
 

Neyvasagam K, Ramakrishnan V, Sanjeevaraja C, Soundararajan N (2007). Raman studies on cupric telluride (CuTe) thin films. Optoelectron. Adv. Mater. Rapid Commun. 1:319-321.

 
 

Nidal H, Ahmad FI, Takeshi M, Darren O (2017). Membrane Characterization (1st edition). Amsterdam, Netherlands: Elsevier.

 
 

Nikodem T, Kuan EJG (2011). Scanning Probe Microscopy. (1st edition). London: UK: World Scientific Publishing Co. Pte. Ltd.

 
 

Olga AS, Dieter MG (2012). Ultra nanocrystal line diamond: synthesis, properties and applications. (2nd edition). Oxford, UK: Elsevier Inc.

 
 

Pandiaraman M, Soundararajan N, Vijayan C (2011). Effect of thickness on the optical band gap of silver telluride thin films. J. Ovonic Res. 7:21-27.

 
 

Patrick E (2009). Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis (1st edition). New York, USA: Springer.

 
 

Peter E, Paul W (2010). Atomic force microscopy (1st edition). Oxford, UK: Oxford University Press.

 
 

Rajesh D, Chandrakanth RR, Sunandana CS (2013). Annealing effects on the properties of copper selenide thin films for thermoelectric applications. IOSR J. Appl. Phys. 4:65-71.
Crossref

 
 

Raman V, John LS, Uwe H (2004). Quantum confinement in PbSe thin films electro deposited by electro chemical atomic layer epitaxy (EC-ALE). Electrochim. Acta. 49:1321-1326.
Crossref

 
 

Rani S, Shanthi J (2014). Raman, photoluminescence (PL) and atomic force microscopy (AFM) analysis of electron beam evaporated annealed CdSe thin films. Int. J. Inno. Res. Sci. Eng. Technol. 3:14776-14780.

 
 

Ramesh K, Thanikaikarasan S, Bharathi B (2014). Structural, morphological and optical properties of copper selenide thin films. Int. J. Chem. Tech. Res. 6:5408-5411.

 
 

Rebecca H, Lisa B (2000). A practical guide to scanning probe microscopy. ThermoMicroscopes. (1st edition). Pennsylvania, USA: DIANE Publishing Company.

 
 

Remigijus R, Darius A, Putinas K, Rokas K (2012). XRD, SEM and photoelectrochemical characterization of ZnSe electrodeposited on Cu and Cu-Sn substrates. Electrochimi. Acta. 70:118-123.
Crossref

 
 

Sahoo AK, Mohanta P, Bhattacharyya AS (2015). Structural and optical properties of CuS thin films deposited by thermal co-evaporation. IOP Conf. Ser. Mater. Sci. Eng. 73: 
Crossref

 
 

Sahuban BMS, Chandramohan R, Vijayan TA, Saravana KS, Sri KSR (2016). Effect of temperature of electron beam evaporated CdSe thin films. J. Mater. Sci. Eng. 5.
Crossref

 
 

Salh A, Moon K, Park H, Kim W (2017). Effect of different cadmium salts on the properties of chemical bath deposited CdS thin films and Cu(InGa)Se2 solar cells. Thin Solid Films 625:56-61.
Crossref

 
 

Sall T, Bernabe MS, Miguel M, Juan AS (2017). SnS thin films prepared by chemical spray pyrolysis at different substrate temperatures for photovoltaic applications. J. Electron. Mater. 46:1714-1719.
Crossref

 
 

Saravanan N, Anuar K, Ho SM, Tan WT, Atan S, Kuang M (2008). Effects of bath temperature on the electrodeposition of Cu4SnS4 thin films. J. Appl. Sci. Res. 4:1701-1707.

 
 

Saravanan N, Anuar K, Ho SM, Abdul HA, Noraini K (2010). Influence of the deposition time on the structure and morphology of the ZnS thin films electrodeposited on indium tin oxide substrates. Digest J. Nanomater. Biostruct. 5:975-980.

 
 

Segu SB, Chandra MR, Saravana KS, Ayeshamariam A, Jayachandran M (2017). Micro structural and optical properties of ferrous selenide thin films and its characterization. Fluid Mech. 4:.
Crossref

 
 

Sergei NM, Whangbo M (1996). Surface analysis with STM and AFM: experimental and theoretical aspects of image analysis (1st edition). Weinheim: Germany: VCH Verlag GmbH & Co.

 
 

Seungbum H (2004). Nanoscale phenomena in ferroelectric thin films. (1st edition). London, UK: Kluwer Academic Publishers.

 
 

Shivprasad P, George M, Dong H, Peter MH (2005). A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids. Rev. Sci. Instrum. 76: 
Crossref

 
 

Siang LK, Anuar K, Ho SM, Nagalingam S (2011). Surface morphology of CuS thin films observed by atomic force microscopy. Sultan Qaboos U. J. Sci. 16:24-33.

 
 

Soundararajan T, Kolandavel M, Suresh S (2015). Investigation of the structural, optical and electrical properties of copper selenide thin films. Mater. Res. 18:1000-1007.
Crossref

 
 

Soumya RD, Ajaya KS, Lata D, Paliwal LJ, Singh RS, Adhikari R (2014). Structural, morphological and optical studies on chemically deposited nanocrystalline CdZnSe thin films. J. Saudi Chem. Soc. 18:327-339.
Crossref

 
 

Subramanian B, Sanjeeviraja C, Jayachandran M (2001). Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Mater. Chem. Phys. 71:40-46.
Crossref

 
 

Sunil HC, Sanjaysinh MC, Jiten PT, Milind PD (2017). Synthesis of manganese sulfide (MnS) thin films by chemical bath deposition and their characterization. J. Mater. Res. Technol. 6:123-128.
Crossref

 
 

Taj MK, Tayyaba B (2012). Compatibility and optoelectronic of ZnSe nano crystalline thin film. Chin. Phys. B. 21:
Crossref

 
 

Thirumavalavan S, Mani K, Sagadevan S (2015). Studies on structural, surface morphology and optical properties of zinc sulphide thin films prepared by chemical bath deposition. Int. J. Phys. Sci. 10:2014-209.

 
 

Valadabadi SA, Amir HS, Hossein AF (2010). Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. J. Ecol. Nat. Environ. 2:154-159.

 
 

Victor B (2012). Atomic force microscopy – imaging, measuring and manipulating surfaces at the atomic scale. (1st edition). London, UK: InTechOpen.

 
 

Wen C, Zhu Z, Li W, Zhang J (2017). Oxygen incorporation in wide band gap semiconductor ZnSe thin films. J. Alloys Compd. 718:197-203.
Crossref

 
 

Wu X, Lai F, Lin L, Lv J, Zhuang B, Yan Q (2008). Optical inhomogeneity of ZnS films deposited by thermal evaporation. Appl. Surf. Sci. 254:6455-6460.
Crossref

 
 

Xie Y (2013). The nanobiotechnology handbook (1st edition). New York, USA: CRC Press.

 
 

Xie H, Onal C, Regnier S, Metin S (2011). Atomic force microscopy based nanorobotics: modelling, simulation, setup building and experiments (1st edition). Berlin, Germany: Springer-Verlag GmbH.

 
 

Xue MZ, Zhou YN, Zhang B, Yu L, Zhang H, Fu ZW (2006). Fabrication and electrochemical characterization of copper selenide thin films by pulsed laser deposition. J. Electrochem. Soc. 152:A2262-A2268.
Crossref

 
 

Yang G (2009). Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64:99-121.
Crossref

 
 

Yang Y, Wang T, Liu C, Yu M (2017). Single phase control of CuTe thin films for CdTe solar cells. Vacuum 142:181-185.
Crossref

 
 

Yazid M, Anuar K, Ho SM, Tan WT, Abdullah AH, Jelas H (2009). Chemical bath deposition of NiSe thin films from alkaline solutions using triethanolamine as complexing agent. Oriental J. Chem. 25:813-816.

 
 

Zhang W, Yang Z, Liu J, Qian Y, Yu W, Jia Y, Liu X, Zhou G, Zhu J (2001). A simple synthesis of nanocrystalline binary metal chalcogenides in alkaline aqueous solution. J. Solid State Chem. 161:184-189.
Crossref

 
 

Zulkefly K, Anuar K, Saravanan N, Ho SM, Tan WT, Atan S (2010). Preparation and studies of chemically deposited Cu4SnS4 thin films in the presence of complexing agent Na2EDTA. Indian J. Eng. Mater. Sci. 17:295-298.

 
 

 


APA Soonmin, H. (2017). Atomic force microscopy studies on sulfur-, selenium- and tellurium-based metal chalcogenide thin films: A review. African Journal of Pure and Applied Chemistry, 11(5), 42-49.
Chicago Ho Soonmin. "Atomic force microscopy studies on sulfur-, selenium- and tellurium-based metal chalcogenide thin films: A review." African Journal of Pure and Applied Chemistry 11, no. 5 (2017): 42-49.
MLA Ho Soonmin. "Atomic force microscopy studies on sulfur-, selenium- and tellurium-based metal chalcogenide thin films: A review." African Journal of Pure and Applied Chemistry 11.5 (2017): 42-49.
   
DOI 10.5897/AJPAC2017.0739
URL http://academicjournals.org/journal/AJPAC/article-abstract/BEB18A566732

Subscription Form