African Journal of Pure and Applied Chemistry
Subscribe to AJPAC
Full Name*
Email Address*

Article Number - D85668762527


Vol.11(1), pp. 1-8 , January 2017
DOI: 10.5897/AJPAC2016.0700
ISSN: 1996-0840



Full Length Research Paper

Electrochemical and optical band gaps of bimetallic silver-platinum varying metal ratios nanoparticles



Fredrick O. Okumu
  • Fredrick O. Okumu
  • Department of Chemistry, Cape Peninsula University of Technology, Tenant Road, P. O. Box 652. Zonnebloem, Cape Town, South Africa.
  • Google Scholar
Mangaka C. Matoetoe*
  • Mangaka C. Matoetoe*
  • Department of Chemistry, Cape Peninsula University of Technology, Tenant Road, P. O. Box 652. Zonnebloem, Cape Town, South Africa.
  • Google Scholar







 Received: 09 August 2016  Accepted: 03 November 2016  Published: 31 January 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Simultaneous citrate reduction of various ratios of silver and platinum ions leads to the formation of core-shell nanostructured bimetallics (BM). Transmission electron microscopy (TEM) and X-ray diffraction XRD data of the BMs depicted crystalline core-shell nanoparticles consisting of Ag core and Pt shell with an average size of 22.2 nm in contrast to the  Pt NPs and Ag NPs monometallics  average sizes of 2.5 and 60.0 nm respectively. Tauc’s calculated optical band gaps ranged from 3.55 to 4.02 eV while the electrochemical based on Breda’s equation had a range of 1.45 to 1.80 eV. These band gaps range variation maybe due to inter atomic interaction, morphology and quantum confinement. Generally, bimetallics had higher band gaps relative to monometallics. The Ag: Pt ratio of 3:1 had the highest optical band gap and the smallest particle size. While the ratio of 1:3 had the highest electrochemical band gap as well as the largest particle size among the BMs. Suggesting band gap dependence on amount of Ag and Pt for optical and electrochemical respectively.

Key words: Optical, electrochemical, band gaps, bimetallic, nanoparticles.

Al-Ibrahim M, Roth HK, Schroedner M, Konkin A, Zhokhavets U, Gobsch G, Scharff P, Sensfuss S (2005). The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org Electron 6:65-77.
Crossref

 

Antolin E, Lopes T, Gonzalez ER (2008). An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J. Alloys Compd. 461:253-262.
Crossref

 

Banerjee R, Jayakrishnan R, Ayyub P (2000). Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J. Phys. Condens. Matter 12:10647-10654.
Crossref

 

Banin U, Lee JC, Guzelian AA, Kadavanich AV, Alivisatos AP, Jaskolski W, Bryant GW, Efros AL, Rosen M (1998). Size dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. J. Chem. Phys. 109:2306-2309.
Crossref

 

Beaupre S, Leclerc M (2002). Fluorene-Based Copolymers for Red-Light-Emitting Diodes. Adv. Funct. Mater. 12(3):192-196.
Crossref

 

Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994). Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72:416 -419
Crossref

 

Bredas JL, Silbey R, oudreux DS, Chance RR (1983). Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105(22):6555-6559.
Crossref

 

Budhiraja N, Sharma A, Dahiya S, Parmar R, Vidyadharan V (2013). Synthesis and Optical Characteristics of Silver Nanoparticles on Different Substrates. Int. Lett. Chem. Phys. Astron. 14:80-88.
Crossref

 

Camargo PHC, Xiong Y, Ji L, Zuo JM, Xia Y (2007). Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J. Am. Chem. Soc. 129:15452-15453.
Crossref

 

Chahal RP, Mahendia S, Tomar AK, Kumar S (2011). Effect of ultraviolet irradiation on the optical and structural characteristics of in-situ prepared PVP-Ag nanocomposite. Digest J. Nanomater. Biostruct. 6(1):299-306.

 

Chatenet M, Aurousseau M, Durand R, Andolfatto F (2003). Silver-platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis: Comparison with pure platinum. J Electrochem. Soc.150(3):D47–D55.
Crossref

 

Chen GD, Stefano D, Nechache R, Rosei R, Rosei F, Ma DL (2011). Bifunctional catalytic/magnetic Ni@Ru core-shell nanoparticles. Chem. Commun. 47:6308–6310.
Crossref

 

D'Andrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME (2005). Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org. Electron. 6(1):11-20
Crossref

 

Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros AL (1993). Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10:100-107.
Crossref

 

Empedocles SA, Norris DJ, Bawendi MG (1996). Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Phys. Rev. Lett. 77(18):3873-3876.
Crossref

 

Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008). Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130:6949-6951.
Crossref

 

Fang MM, Zu XT, Li ZJ, Zhu S, Liu CM, Zhou WL, Wang LM (2008). Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcination or sol–gel-hydrothermal routeOriginal. J. Alloys Compd. 454:261-267.
Crossref

 

Fu H, Wang LW, Zunger A (1998). On the applicability of the k.p method to the electronic structure of quantum dots. Phys. Rev. B 57:9971-9987.
Crossref

 

Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012). Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim. Acta. 63:1-8.
Crossref

 

Haram SK, Quinn BM, Bard AJ (2001). Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123:8860-8861.
Crossref

 

Hirakawa K (2012). Self organisation of silver –core bimetallic nanoparticles and their application for catalytic reaction, Chapter 4 of Smart Nanoparticles Technology, edited by Dr Abbas Hashim, ISBN: 978-953-51-0500-B. 67-92.

 

Hudak EM, Mortime JT, Martin HB (2010). Platinum for neural stimulation: voltammetry considerations. J. Neural Eng. 7(2):026005.
Crossref

 

Jingyu S, Jianshu H, Yanxia C, Xiaogang Z (2007). Hydrothermal Synthesis of Pt-Ru/MWCNTs and its Electrocatalytic Properties for Oxidation of Methanol. Int. J. Electrochem. Sci. 2:64-71.

 

Johansson T, Mammo W, Svensson M, Andersson M R, Inganas O (2003). Electrochemical band gaps of substituted polythiophenes. J. Mater. Chem. 13:1316-1323.
Crossref

 

Khanal S, Casillas G, Velazquez-Salazar JJ, Ponce A, Jose-Yacaman M (2012). Atomic Resolution Imaging of Polyhedral PtPd Core–Shell Nanoparticles by Cs-Corrected STEM. J. Phys. Chem. C 116:23596-23602.
Crossref

 

Kumar H, Rani R (2013). Structural Characterization of Silver Nanoparticles Synthesized by Micro emulsion Route. Int. J. Eng. Innov. Technol. 3:344-348.

 

Lieber CM (1998). One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commu.107:607- 616.
Crossref

 

Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF (2005). Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett. 409:208-211.
Crossref

 

Liu B, Yu WL, Lai YH, Huang W (2001). Blue-Light-Emitting Fluorene-Based Polymers with Tunable Electronic Properties. Chem. Mater. 13(6):1984-1991.
Crossref

 

Okumu F, Matoetoe M (2016). Kinetics and Morphological Analysis of Silver Platinum Bimetallic Nanoparticles. Acta Metall. Sin. (Engl. Lett.) 29:320-325.

 

Pankove JI (1971). Optical process in semiconductors, Prentice-Hall, Englewood Cliffs, New York Dover publications

 

Pei J, Yu W-L, Huang W (2000). A novel series of efficient thiophene-based light-emitting conjugated polymers and application in polymer light-emitting diodes. Macromolecules 33:2462-2471.
Crossref

 

Peng Z, Yang H (2008). Ag-Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 181(7):1546-1551.
Crossref

 

Nkosi SS, Mwakikunga BW, Sideras-Haddad E, Forbes A (2012). Synthesis and characterization of potential iron-platinum drugs and supplements by laser liquid photolysis, Nanotechnol. Sci. Appl. 5:27-36.

 

Niquet YM, Allan G, Deleue C, Lannoo M (2000). Quantum confinement in germanium nanocrystals. Appl. Phys. Lett. 77:1182-1184.
Crossref

 

Nousiainen O, Kangasvieri T, Rönkä K, Rautioaho R and Vahakangas J (2007). Interfacial reactions between Sn-based solders and AgPt thick film metallizations on LTCC. Soldering Surf. Mt. Tech. 19:15-25.
Crossref

 

Nousiainen O, Rautioaho R, Kautio K, Jääskeläinen J, Leppävuori S (2005). Solder joint reliability in AgPt‐metallized LTCC modules. Soldering Surf. Mt. Tech. 17(3):32‐42.
Crossref

 

Revaprasadu N, Mlondo SN (2006). Use of metal complexes to synthesize semiconductor nanoparticles. Pure Appl. Chem. 78(9):1691-1702.
Crossref

 

Salem A (2014). Silver-doped cadmium oxide nanoparticles: Synthesis, structural and optical properties. Eur. Phys. J. Plus.129:263 -275.
Crossref

 

Sankara RB, Venkatramana RS, Koteeswara RN, Pramoda K (2013). Synthesis, Structural, Optical Properties and Antibacterial Activity of Co-Doped (Ag, Co) ZnO Nanoparticles. Res. J. Mater. Sci. 1:11-23.

 

Shi L, Wang A, Zhang T, Zhang B, Su D, Li H, Song Y (2013). One-step synthesis of Au–Pd alloy nanodendrites and their catalytic activity. J. Phys. Chem. C 117:12526–12536.
Crossref

 

Smith MAM, Mohs AM, Nie S (2009). Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4:56-63.
Crossref

 

Tauc JR, Grigorovici R, Vancu A (1966). Optical properties and electronic structure of amorphous germanium, Optical Phys. Status Solidi B 15(2):627-637.
Crossref

 

Wang GF, Wang W, Wu JF, Liu HY, Jiao SF, Fang B (2009). Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red. Microchim. Acta 164(1-2):149-155
Crossref

 

Xu JB, Zhao TS, Liang ZX (2008). Synthesis of Active Platinum−Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction. J. Phys. Chem. C 112 (44):17362–17367.
Crossref

 

Yang P, Meldrum FC, Fendler JH (1995). Epitaxial Growth of Cadmium Sulfide under Arachidic Acid Monolayers. J. Phys. Chem. 99:5500-5504.
Crossref

 

Yang S, Peng Z, Yang H (2008). Platinum lead nanostructures: formation, phase behavior and electrocatalytic properties. Adv. Funct. Mater. 18:2745-2753.
Crossref

 


APA Okumu, F. O., & Matoetoe, M. C. (2017). Electrochemical and optical band gaps of bimetallic silver-platinum varying metal ratios nanoparticles. African Journal of Pure and Applied Chemistry, 11(1), 1-8.
Chicago Fredrick O. Okumu and Mangaka C. Matoetoe. "Electrochemical and optical band gaps of bimetallic silver-platinum varying metal ratios nanoparticles." African Journal of Pure and Applied Chemistry 11, no. 1 (2017): 1-8.
MLA Fredrick O. Okumu and Mangaka C. Matoetoe. "Electrochemical and optical band gaps of bimetallic silver-platinum varying metal ratios nanoparticles." African Journal of Pure and Applied Chemistry 11.1 (2017): 1-8.
   
DOI 10.5897/AJPAC2016.0700
URL http://academicjournals.org/journal/AJPAC/article-abstract/D85668762527

Subscription Form