African Journal of Pharmacy and Pharmacology
Subscribe to AJPP
Full Name*
Email Address*

Article Number - 2A23B6462203


Vol.10(48), pp. 1025-1033 , December 2016
DOI: 10.5897/AJPP2015.4312
ISSN: 1996-0816



Review

Phytanic acid, a daily consumed chlorophyll-yielded phytol bio-metabolite: A comprehensive review



Md. Torequl Islam
  • Md. Torequl Islam
  • Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Eunus S. Ali
  • Eunus S. Ali
  • Gaco Pharmaceuticals and Research Laboratory, Dhaka-1000, Bangladesh.
  • Google Scholar
Ricardo M. de Carvalho
  • Ricardo M. de Carvalho
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Márcia F. C. J. Paz
  • Márcia F. C. J. Paz
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Antonio L. Braga
  • Antonio L. Braga
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Rosália M. T. de Lima
  • Rosália M. T. de Lima
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Leonardo da R. Sousa
  • Leonardo da R. Sousa
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Marcus V. O. B. de Alencar
  • Marcus V. O. B. de Alencar
  • Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Jose V. de Oliveira Santos
  • Jose V. de Oliveira Santos
  • Laboratory of Toxicology and Genetics, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar
Ana A. de Carvalho Melo-Cavalcante
  • Ana A. de Carvalho Melo-Cavalcante
  • Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina (Piaui)-64.049-550, Brazil.
  • Google Scholar







 Received: 06 March 2015  Accepted: 09 September 2016  Published: 29 December 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


An important chlorophyll-derived diterpenoid essential oil, phytol (PYT) bio-metabolite, phytanic acid (PA) has a number of pathophysiological contributions. The PA metabolism and its plasma levels associated phenomena are continuously being researched on. This study aims to look at the complete current scenario of PA. The findings suggest that PA has anti-diabetic, cytotoxic, anticancer and anti-teratogenic activities. Although PA-mediated Refsum’s Diseases (RD), Sjogren-Larsson Syndrome (SLS) and prostate cancer are still controversial; Zellweger's Disease Hyperpipecolic Academia (ZDHA), Rhizomelic Chondrodysplasia Punctata (RCDP), Leber Disease (LD) and oxidative stress leading to mitochondrial and cardiac complications are also evident. In conclusion, PA may be a good biomarker of some pathophysiological phenomena and can be used for medico-pharmaceutical functions.

Key words: Phytanic acid, phytol bio-metabolite, biomarkers, pathophysiological contributions.

Abbreviation:

ACSVL1/VLCS, Membrane-bound enzyme at the ER; AMACR, α-methylacyl-CoA racemase; ARD, adult Refsum’s disease; ERD, early Refsum’s disease; FAO, fatty acid oxidase; HDL, high density lipoproteins; IDDM, insulin dependent diabetes mellitus; IRD, infantile Refsum’s disease; LD, Leber disease; NALD, neonatal adrenoleucodystrophy; PA, phytanic acid; PPAR, proliferator-activated receptor; PYT, phytol; PAHX, phytanoyl-CoA 2-hydroxylase; RBC, red blood corpuscles; RCDP, rhizomelic chondrodysplasia punctata; ROS, reactive oxygen species; RXR, retinoid X receptor; SLS, Sjogren Larsson syndrome; ZDHA, Zellweger's disease hyperpipecolic academia; 3-MAA, 3-methyl-adipic acid; ADH, aldehyde dehydrogenase; AMP, adenosine mono-phosphate; ATP, adenosine tri-phosphate; AV, arterio-ventricular; CoA-SH, co-enzyme-A-thiol; CYP450, - cytochrome P-450; CVS, cardio vascular system; DNA, deoxy ribonucleic acid; ER, endoplasmic reticulum; FAD, flavin adenine di-nucleotide; FADH, reduced flavin adenine di-nucleotide; FALDH, fatty aldehyde dehydrogenase; FL, follicular lymphoma; GRP40, G-protein-coupled receptor-40; HACL1, 2-hydroxyphytanoyl-CoA lyase; LBL, large B-cell lymphoma; NAD, nicotinamide adenine dinucleotide; NAD+, oxidized nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; NADP, reduced nicotinamide adenine di-nucleotide phosphate; NADP+, oxidized nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NHL, non-Hodgkin lymphoma; PDH, pristanal dehydrogenase; PHYH, phytanoyl-CoA α-hydroxylase; PHYH/PAHX, phytanoyl-CoA 2-hydrolase; PMP34, peroxisomal membrane protein-34; PXMP2, peroxisomal membrane protein-2; RAR, retinoic acid receptor; Res, retinyl esters; SCPx, sterol carrier protein; UDP, uridine di-phosphate.


Arnhold T, Elmazar MM, Nau H (2002). Prevention of vitamin A teratogenesis by phytol or phytanic acid results from reduced metabolism of retinol to the teratogenic metabolite, all-trans-retinoic acid. Toxicol. Sci. 66:274-282.
Crossref

 

Busanello EN, Amaral AU, Tonin AM, Zanatta A, Viegas CM, Vargas CR, Wajner M (2013). Disruption of mitochondrial homeostasis by phytanic acid in cerebellum of young rats. Cerebellum 12:362-369.
Crossref

 
 

Busanello EN, Viegas CM, Moura AP, Tonin AM, Grings M, Vargas CR, Wajner M (2010). In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Res. 1352:231-238.
Crossref

 
 

Chambon P (1993). The molecular and genetic dissection of retinoid signaling pathway. Gene 135:223-228.
Crossref

 
 

Chambraud B, Radanyi C, Camonis JR, Rajkowski K, Schumacher M, Baulieu EE (1999). Immunophilins, Refsum disease, and lupus nephritis: The peroxisomal enzyme phytanoyl-CoA alpha-hydroxylase is a new FKBP-associated protein. Proceed. Nat. Acad. Sci. 96:2104-2109.
Crossref

 
 

Che BN, Oksbjerg N, Hellgren LI, Nielsen JH, Young JF (2013). Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes. Lipids Health Dis. 12:14.
Crossref

 
 

Clayton PT, Johnson AW, Mills KA, Lynes GW, Wilson J, Casteels M, Mannaerts G (1996). Ataxia associated with increased plasma concentrations of pristanic acid, phytanic acid and C27 bile acids but normal fibroblast branched-chain fatty acid oxidation. J. Inherit. Metabol. Dis. 19:761-768.
Crossref

 
 

De Keyser L (2006). Livestock products with an increased PPAR/RXR heterodimer activator level. US0167096.

 
 

Elmazar MM, El-Abhar HS, Schaalan MF, Farag NA (2013). Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS One 8:e45638.
Crossref

 
 

Elmazar MM, Nau H (2004). Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands. Arch. Toxicol. 78:660-668.
Crossref

 
 

Gloerich J, van den Brink DM, Ruiter JP, van Vlies N, Vaz FM, Wanders RJ, Ferdinandusse S (2007). Metabolism of phytol to phytanic acid in the mouse, and the role of PPARalpha in its regulation. J. Lipid Res. 48:77-85.
Crossref

 
 

Gloerich J, van Vlies N, Jansen GA, Denis S, Ruiter JP, van Werkhoven MA, Duran M, Vaz FM, Wanders RJ, Ferdinandusse S (2005). A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha- dependent and -independent pathways. J. Lipid Res. 46:716-726.
Crossref

 
 

Islam MT, de Alencar MV, da Conceição Machado K, da Conceição Machado K, de Carvalho Melo-Cavalcante AA, de Sousa DP, de Freitas RM (2015). Phytol in a pharma-medico-stance. Chem. Biol. Interact. 240:60-73.
Crossref

 
 

Ji C (2003). Technique for cleanly recovering byproduct methyl chloride of glyphosate acid. CN1446782.

 
 

Kahlert S, Schönfeld P, Reiser G (2005). The Refsum disease marker phytanic acid, a branched chain fatty acid, affects Ca2+ homeostasis and mitochondria, and reduces cell viability in rat hippocampal astrocytes. Neurobiol. Dis. 18:110-118.
Crossref

 
 

Kataria Y, Wright M, Deaton RJ, Rueter EE, Rybicki BA, Moser AB, Ananthanrayanan V, Gann PH (2015). Dietary influences on tissue concentrations of phytanic acid and AMACR expression in the benign human prostate. Prostate 75:200-210.
Crossref

 
 

Klenk E, Kahlke W (1963). Über das Vorkommen der 3.7.11.15-Tetramethyl-hexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese (Verdacht auf Heredopathia atactica polyneuritiformis [Refsum-Syndrom]). In: Hoppe Seylers Z Physiol Chem. 333: S133-139.
Crossref

 
 

Komen JC, Distelmaier F, Koopman WJ, Wanders RJ, Smeitink J, Willems PH (2007). Phytanic acid impairs mitochondrial respiration through protonophoric action. Cell. Mol. Life Sci. 64:3271-3281.
Crossref

 
 

Komen JC, Duran M, Wanders RJ (2005). Characterization of phytanic acid omega hydroxylation in human liver microsomes. Mol. Genet. Metabol. 85:190-195.
Crossref

 
 

Komen JC, Wanders RJ (2006). Identification of the cytochrome P450 enzymes responsible for the omega-hydroxylation of phytanic acid. FEBS Lett. 580:3794-3798.
Crossref

 
 

Kruska N, Reiser G (2011). Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40. Neurobiol. Dis. 43:465-472.
Crossref

 
 

Liska J, Macejova D, Ondkova S, Brtko J (2012). Morphology of 1-methyl-1-nitrosourea induced rat mammary tumours after treatment with precursor of phytanic acid or its combination with vitamin D analogue. Endocrinol. Regul. 46:21-26.
Crossref

 
 

Little JM, Williams L, Xu J, Radominska-Pandya A (2002). Glucuronidation of the dietary fatty acids, phytanic acid and docosahexaenoic acid, by human UDP-glucuronosyltransferases. Drug Metabol. Disposition 30:531-533.
Crossref

 
 

Manuel CLJ (2012). Compositions rich in omega-3 fatty acids with a low content in phytanic acid. EP2429317.

 
 

Matsunaga I, Sumimoto T, Kusunose E, Ichihara K (1998). Phytanic acid alpha-hydroxylation by bacterial cytochrome P450. Lipids 33:1213-1216.
Crossref

 
 

Monnig G, Wiekowski J, Kirchhof P, Stypmann J, Plenz G, Fabritz L, Bruns HJ, Eckardt L, Assmann G, Haverkamp W, Breithardt G, Seedorf U (2004). Phytanic acid accumulation is associated with conduction delay and sudden cardiac death in sterol carrier protein-2/sterol carrier protein-x deficient mice. J. Cardiovasc. Electrophysiol. 15:1310-1316.
Crossref

 
 

Moser AB, Hey J, Dranchak PK, Karaman MW, Zhao J, Cox LA, Ryder OA, Hacia JG (2013). Diverse captive non-human primates with phytanic acid-deficient diets rich in plant products have substantial phytanic acid levels in their red blood cells. Lipids Health Dis. 12:10.
Crossref

 
 

Mukherji M, Kershaw NJ, Schofield CJ, Wierzbicki AS, Lloyd MD (2002). Utilization of sterol carrier protein-2 by phytanoyl-CoA 2-hydroxylase in the peroxisomal alpha oxidation of phytanic acid. Chem. Biol. 9:597-605.
Crossref

 
 

Nagai K (2015). Phytanic acid induces Neuro2a cell death via histone deacetylase activation and mitochondrial dysfunction. Neurotoxicol. Teratol. 48:33-39.
Crossref

 
 

Lammer EJ, Scott WJ (1994). Teratogenicity of vitamin A and retinoids. In vitamin A Health and Disease (R. Blomhoff, Ed.), Marcel Dekker, New York; pp. 615-664.

 
 

Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, Wright ME, Weisenburger DD, Smith SM, Chiu BC (2013). Phytanic acid and the risk of non-Hodgkin lymphoma. Carcinogen. 34:170-175.
Crossref

 
 

Pahan K, Khan M, Singh I (1996). Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata. J. Lipid Res. 37:1137-1143.

 
 

Peter O, Malin H, Rikard H (2014). Phytol as a cholesterol lowering agent. US073703.

 
 

Reiser G, Schönfeld P, Kahlert S (2006). Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. Int. J. Dev. Neurosci. 24:113-122.
Crossref

 
 

Rudolf K (2012). Fatty acid fractionation process, fatty acid products and use thereof. EP2464240.

 
 

Schluter A, Giralt M, Iglesias R, Villarroya F (2002). Phytanic acid, but not pristanic acid, mediates the positive effects of phytol derivatives on brown adipocyte differentiation. FEBS Lett. 517:83-86.
Crossref

 
 

Schönfeld P, Kahlert S, Reiser G (2004). In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem. J. 383:121-128.
Crossref

 
 

Schönfeld P, Kahlert S, Reiser G (2006). A study of the cytotoxicity of branched-chain phytanic acid with mitochondria and rat brain astrocytes. Exp. Gerontol. 41:688-696.
Crossref

 
 

Schönfeld P, Reiser G (2006). Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J. Biol. Chem. 281:7136-7142.
Crossref

 
 

Tang XH, Suh MJ, Li R, Gudas LJ (2007). Cell proliferation inhibition and alterations in retinol esterification induced by phytanic acid and docosahexaenoic acid. J. Lipid Res. 48:165-176.
Crossref

 
 

Verhoeven NM, Wanders RJ, Poll-The BT, Saudubray JM, Jakobs C (1998). The metabolism of phytanic acid and pristanic acid in man: a review. J. Inherit. Metabol. Dis. 21:697-728.
Crossref

 
 

Vollhardt JH (2010). Topical agents containing phytanic acid or a derivative thereof. CN101829028.

 
 

Wanders RJ, Komen JC (2007). Peroxisomes, Refsum's disease and the alpha- and omega-oxidation of phytanic acid. Biochem. Soc. Trans. 35:865-869.
Crossref

 
 

Wanders RJA, Komen J, Ferdinandusse S (2011). Phytanic acid metabolism in health and disease. Biochim. Biophys. Acta 1811:498-507.
Crossref

 
 

Watkins PA, Moser AB, Toomer CB, Steinberg SJ, Moser HW, Karaman MW, Ramaswamy K, Siegmund KD, Lee DR, Ely JJ, Ryder OA, Hacia JG (2010). Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions. BMC Physiol. 10:19.
Crossref

 
 

Werner LB, Hellgren LI, Raff M, Jensen SK, Petersen RA, Drachmann T, Tholstrup T (2011). Effect of dairy fat on plasma phytanic acid in healthy volunteers - a randomized controlled study. Lipids Health Dis. 10:95.
Crossref

 
 

Wierzbicki AS, Lloyd MD, Schofield CJ, Feher MD, Gibberd FB (2002). Refsum's disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J. Neurochem. 80:727-735.
Crossref

 
 

Wierzbicki AS, Sankaralingam A, Lumb PJ, Hardman TC, Sidey MC, Gibberd FB (1999). Transport of phytanic acid on lipoproteins in Refsum disease. J. Inherit. Metabol. Dis. 22:29-36.
Crossref

 
 

Wierzbicki AS (2007). Peroxisomal disorders affecting phytanic acid alpha-oxidation: a review. Biochem. Soc. Trans. 35:881-886.
Crossref

 
 

Willemsen MA, Van Der Graaf M, Van Der Knaap MS, Heerschap A, Van Domburg PH, Gabreëls FJ, Rotteveel JJ (2004). MR imaging and proton MR spectroscopic studies in Sjögren-Larsson syndrome: characterization of the leukoencephalopathy. AJNR Am. J. Neuroradiol. 25:649-657.

 
 

Wright ME, Bowen P, Virtamo J, Albanes D, Gann PH (2012). Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int. J. Cancer 131:1396-1406.
Crossref

 
 

Xu F, Ng VY, Kroetz DL, de Montellano PR (2006). CYP4 isoform specificity in the omega-hydroxylation of phytanic acid, a potential route to elimination of the causative agent of Refsum's disease. J. Pharmacol. Exp. Ther. 318:835-839.
Crossref

 
 

Xu G (2004). Crystallizing method for 7-amino cephalo phytanic acid. CN1511956.

 
 

Yamamoto S, Onozu H, Yamada N, Hayasaka S, Watanabe A (1995). Mild retinal changes in a 47-year-old patient with phytanic acid storage disease. Ophthalmologica 209:251-255.
Crossref

 
 

Young SP, Johnson AW, Muller DP (2011). Effects of phytanic acid on the vitamin E status, lipid composition and physical properties of retinal cell membranes: implications for adult Refsum disease. Clin. Sci. 101:697-705.
Crossref

 
 

Zomer AW, Jansen GA, Van Der Burg B, Verhoeven NM, Jakobs C, Van Der Saag PT, Wanders RJ, Poll-The BT (2000a). Poll-The BT. Phytanoyl-CoA hydroxylase activity is induced by phytanic acid. Eur. J. Biochem. 267:4063-4067.
Crossref

 
 

Zomer AW, van Der Burg B, Jansen GA, Wanders RJ, Poll-The BT, van Der Saag PT (2000b). Pristanic acid and phytanic acid: naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor alpha. J. Lipid Res. 41:1801-1807.

 

 


APA Md. Islam, T., Ali, E. S., de Carvalho, R. M., Paz, M. F. C. J., Braga, A. L., de Lima, R. M. T., Sousa, L. R., de Alencar, M. V. O. B., Santos, J. V. O., & Melo-Cavalcante, A. A. C. (2016). Phytanic acid, a daily consumed chlorophyll-yielded phytol bio-metabolite: A comprehensive review. African Journal of Pharmacy and Pharmacology, 10(48), 1025-1033.
Chicago Md. Torequl Islam,, Eunus S. Ali, Ricardo M. de Carvalho, M&arcia F. C. J. Paz, Antonio L. Braga, Ros&alia M. T. de Lima, Leonardo da R. Sousa, Marcus V. O. B. de Alencar, Jose V. de Oliveira Santos and Ana A. de Carvalho Melo-Cavalcante,. "Phytanic acid, a daily consumed chlorophyll-yielded phytol bio-metabolite: A comprehensive review." African Journal of Pharmacy and Pharmacology 10, no. 48 (2016): 1025-1033.
MLA Md. Torequl Islam, et al. "Phytanic acid, a daily consumed chlorophyll-yielded phytol bio-metabolite: A comprehensive review." African Journal of Pharmacy and Pharmacology 10.48 (2016): 1025-1033.
   
DOI 10.5897/AJPP2015.4312
URL http://academicjournals.org/journal/AJPP/article-abstract/2A23B6462203

Subscription Form