African Journal of Plant Science
Subscribe to AJPS
Full Name*
Email Address*

Article Number - E97602863799


Vol.11(5), pp. 105-113 , May 2017
DOI: 10.5897/AJPS2017.1521
ISSN: 1996-0824



Review

Utilization of wild relatives for maize (Zea mays L.) improvement



Abdoul-Raouf Sayadi Maazou
  • Abdoul-Raouf Sayadi Maazou
  • College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
  • Google Scholar
Ju Qiu
  • Ju Qiu
  • College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
  • Google Scholar
Jianyu Mu
  • Jianyu Mu
  • College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
  • Google Scholar
Zhizhai Liu
  • Zhizhai Liu
  • College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
  • Google Scholar







 Received: 25 January 2017  Accepted: 03 March 2017  Published: 31 May 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Experimentally induced introgression and selection during domestication and maize (Zea mays L.) improvement involved selection of specific alleles at genes controlling morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. The plant breeder would have to extend crosses to the wild relatives to introduce novel alleles and diversify the genetic base of elite breeding materials. The use of maize wild relatives (Teosintes and Tripsacum) genes to improve maize performance is well established with important examples dating back more than 60 years. In fact, Teosintes and Tripsacum are known to possess genes conferring tolerance to several biotic and abiotic stress including chlorotic dwarf virus, downy mildew, Fusarium, Striga hermonthica, rootworms, drought and flooding. This review provides an overview of the application of these wild relatives and demonstrates their roles on the development of stress tolerant maize plants. It also highlights the use of Teosintes and Tripsacum to improve selected quantitative traits such as yield.

 

Key words: Maize (Zea mays L.), Teosintes, Tripsacum, stress tolerance, maize improvement.

Aditya P, Jitendra K (2014). Alien Gene Transfer in Crop Plants, Volume 2: Achievements and Impacts. Springer Science & Business Media.

 

Amusan IO, Patrick JR, Abebe M, Thomas H, Gebisa E (2008). Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol. 178:157-166.
Crossref

 
 

Ashraf M, Ozturk M, Ahar HR (eds) (2009). Salinity and water stress: improving crop efficiency. Springer, Berlin

 
 

Bai D, Scoles GJ, Knott DR (1995). Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats. Genome 38:8-16.
Crossref

 
 

Bennetzen JL (2007). Patterns in grass genome evolution. Curr. Opin. Plant Biol. 10:176-181.
Crossref

 
 

Bergquist RR (1979). Selection for disease resistance in a maize breeding programme. II. Introgression of an alien genome from Tripsacum dactyloides conditioning resistance in Zea mays. Proceedings of the tenth meeting of the Maize and Sorghum Section of Eucarpia, Varna, Bulgaria. Pp. 200-206.

 
 

Bergquist RR (1981). Transfer from Tripsacum dactyloides to corn of a major gene locus conditioning resistance to Puccinia sorghi. Phytopathology 71:518-520.
Crossref

 
 

Berthaud J, Savidan Y, Barré M, Leblanc O (1997). Tripsacum. In. D. Fuccillo, Sears L, Stapleton P, Eds., Biodiversity in Trust. Cambridge University Press, Cambridge. Pp. 227-233.

 
 

Berthaud J, Savidan Y, Leblanc O (1995). Tripsacum: diversity and Bird RMK (2000). A remarkable new teosinte from Nicaragua: growth and treatment of progeny. Maize Genetics Cooperation Newsletter 74:58-59.

 
 

Branson TF (1971). Resistance in the grass tribe Maydeae to larvae of the western corn rootworm. Ann. Entom. Soc. Am. 64:861-863.
Crossref

 
 

Brar DS (2005). Broadening the gene pool of rice through introgression from wild species. In. Toriyama, K., Heong, K.L., Hardy, B., ed., Rice is life: Scientific perspectives for the 21st century, Proceedings of the World Rice Research Conference, Tokyo and Tsukuba, Japan, November 4–7, 2004.

 
 

Canci H, Toker C (2009). Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet. Resour. Crop Evol. 56:1-6.
Crossref

 
 

Chittaranjan K (2011). Wild crop relatives: Genomic and breeding resources: Cereals. Springer Science & Business Media.

 
 

Clark RB, Alberts EE, Zobel RW, Sinclair TR, Miller MS, Kemper WD, Foy CD (1996). Eastern gamagrass (Tripsacum dactyloides) root penetration and chemical properties of claypan soils. In: JE Box Jr, Ed., Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems. Kluwer Acad. Pub., Dordrecht, The Netherlands. Pp. 191-211.

 
 

Clifford BC (1995). Diseases, pests and disorders of oats. In: Welch RW (ed) The oat crop: production and utilization. Chapman & Hall, London, UK, Pp. 252-278.
Crossref

 
 

Cohen JI, Gallinat WC (1984). Potential use of alien germplasm for maize improvement. Crop Sci. 24:1011-1015.
Crossref

 
 

Comis D (1997). Aerenchyma: lifelines for living underwater. Agric. Res. 45:4-8.

 
 

Coyne PI, Bradford JA (1985). Comparison of leaf gas exchange and water-use efficiency in two Eastern gamagrass accessions. Crop Sci. 25:65-75.
Crossref

 
 

De Wet JMJ (1979). Tripsacum introgression and agronomic fitness in maize (Zea mays L.). Proc. Conf. Broadening Genet. Base Crops, Pudoc, Wageningen.

 
 

De Wet JMJ, Harlan JR (1972). Origin of maize: tripartite hypothesis. Euphytica 21:271-279.
Crossref

 
 

De Wet JMJ, Brink DE, Cohen CE (1983). Systematics of Tripsacum section Faciculata (Gramineae). Am. J. Bot. 70:1139-1146.
Crossref

 
 

De Wet JMJ, Harlan JR, Lambert RJ, Engle LM (1972). Introgression from Tripsacum into Zea and the Origin of Maize. Caryologia 25(1):25-31.
Crossref

 
 

Dela Vina AC, Mendoza ACA, Eagle LM, Ramirez DA (1995). Inheritance of selected morphological characters in Zea I. Zea mays ssp. mays × Zea mays ssp. mexicana and Zea mays ssp. mays × Zea diploperennis. Philipp. J. Crop Sci. 20:94-107.

 
 

Dillon SL, Lawrence PK, Henry RJ (2005). The new use of Sorghum bicolor-derived SSR markers to evaluate genetic diversity in 17 Australian Sorghum species. Plant Genet. Res 3(1):19-28.
Crossref

 
 

Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007). Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann. Bot. 100:975-989.
Crossref

 
 

Doebley JF (1990a). Molecular systematics of Zea (Gramineae). Maydica 35:143-150.

 
 

Doebley JF (1990b). Molecular evidence for gene flow among Zea species. Bioscience 40:443-448.
Crossref

 
 

Eubanks MW (1997). Molecular analysis of crosses between Tripsacum dactyloides and Zea diploperennis (Poaceae). Theor. Appl. Genet. 94:707-712.
Crossref

 
 

Eubanks MW (2001). The origin of maize: evidence for Tripsacum ancestry. In. Janick J, Ed., Plant breeding reviews. John Wiley & Sons, Inc., New York 20:15-66.

 
 

Eubanks MW (2002). Investigation of novel genetic resource for rootworm resistance in corn. In. NSF (ed) Proceedings of the NSF design, service and manufacturing conference. Iowa State University, San Juan, Puerto Rico, Pp. 2544-2550.

 
 

Eubanks MW (2006). A genetic bridge to utilize Tripsacum germplasm in maize improvement. Maydica 51:315-327.

 
 

Feldman M, Kislev ME (2007). Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr. J. Plant Sci. 55:207-221.
Crossref

 
 

Findley WR, Nault LR, Styer WE, Gordon DT (1982). Inheritance of maize chlorotic dwarf virus resistance in maize × Zea diploperennis backcrosses. Maize News Lett. 56:165-166.

 
 

Gavrilova O, Gagkaeva T, Burkin A, Kononenko G, Loskutov I (2008). Susceptibility of oat germplasm to Fusarium infection and mycotoxin accumulation in grains. In. Proceedings of the 8th international oat conference, 27 June–2 July 2008, Minneapolis, MN, USA, Poster V-2a.

 
 

Gill BS, Li W, Sood S, Kuraparthy V, Friebe SKJ, Zhang Z, Faris JD (2007). Genetics and genomics of wheat domestication-driven evolution. Isr. J. Plant Sci. 55:223-229.
Crossref

 
 

Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC (2003). Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol. 160: 557-568.
Crossref

 
 

Hajjar R, Hodgkin T (2007). The use of wild relatives in crop improvement : A survey of developments over the last 20 years. Euphytica 156:1-13.
Crossref

 
 

Hannes D, Ruth JE, Luigi G, Colin KK, Jonas VM, Jane T (2014). Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology Sustain. Food Syst. 38(4):369-377.
Crossref

 
 

Harinder KC , Vineeta K , Shoukat AR (2014). Maize.. In: Aditya P, Jitendra K. Alien Gene Transfer in Crop Plants, Volume 2 Achievements and Impacts. Springer. Pp. 27-50.

 
 

Hitchcock AS (1951). Manual of grasses of the United States, Second edition, revised by A. Chase. U. S. Government Printing Office, Washington, DC.
Crossref

 
 

Hooker AL, Perkins JL (1980). Helminthosporium leaf blights of corn the state of the art. Proceedings of the annual Corn and Sorghum Research Conference, 35:68-87.

 
 

Iltis HH, Benz BF (2000). Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10:382-390.
Crossref

 
 

Iltis HH, Doebley JF (1980). Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am. J. Bot. 67:994-1004.
Crossref

 
 

Iltis HH, Doebley JF, Guzman RM, Pazy B (1979). Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186-188.
Crossref

 
 

Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010). A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann. Bot. 106:515-520.
Crossref

 
 

Kamala V, Singh SD, Bramel PJ, Manohar Rao D (2002). Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci. 42:1357-1360.
Crossref

 
 

Karn A, Gillman JD, Flint-Garcia SA (2017). Genetic analysis of teosinte alleles for kernel composition traits in maize. G3 (Bethesda) pii: g3.117.039529.

 
 

Kemper WD, Alberts EE, Foy CD, Clark RB, Ritchie JC, Zobel RW (1997). Aerenchyma, acid tolerance, and associative N fixation enhance carbon sequestration in soil. In: R Lal, JM Kimble, RF Follett, BA Stewart., Eds., Management of Carbon Sequestration in Soil. CRC Press, Boca Raton, FL. Pp. 221-234.

 
 

Kim SK, Akintunde AY, Walker P (1999). Responses of maize inbreds during development of Striga hermonthica infestation. Maydica 44:333-339.

 
 

Kindiger BK, Beckett JB (1990). Cytological evidence supporting a procedure for directing and enhancing pairing between maize and Tripsacum. Genome 33:495-500.
Crossref

 
 

Kuhlman LC, Burson BL, Klein PE, Klein RR, Stelly D, Price HJ, Rooney WL (2008). Genetic recombination in Sorghum bicolor × S. macrospermum interspecific hybrids. Genome 51:749-756
Crossref

 
 

Lagoke STO, Parkinson VO, Agunbiade RM (1991). Parasitic weeds and control methods in Africa. In: Kim SK, ed. Combating Striga in Africa, proceedings of the international workshop organized by IITA, ICRISAT, and IDRC. Ibadan, Nigeria: IITA, 3-14.

 
 

Lane JA, Child DV, Moore THM, Arnold GM, Bailey JA (1997). Phenotypic characterisation of resistance in Zea diploperennis to Striga hermonthica. Maydica 42:45-51.

 
 

Leblanc O, Grimanelli D, Gonzalez DLD., Savidan Y (1995). Detection of the apomixis mode of reproduction in maize Tripsacum hybrids using maize RFLP markers. Theor. Appl. Genet. 90:1198-1203.
Crossref

 
 

Liu Z, Cook J, Melia-Hancock S, Guill K, Bottoms C, Garcia A, Ott O, Nelson R, Recker J, Balint-Kurti P, Larsson S, Lepak N, Buckler E, Trimble L, Tracy W, McMullen MD, Flint-Garcia SA (2016a). Expanding maize genetic resources with pre-domestication alleles: Maize-teosinte introgression populations. Plant Genome 9:1.
Crossref

Liu Z, Garcia A, McMullen MD, Flint-Garcia SA (2016b). Genetic analysis of kernel traits in maize-teosinte introgression populations. G3 6(8): 2523-2530.
Crossref

 

Loskutov IG (2008). On evolutionary pathway of Avena species. Genet. Resour. Crop Evol. 55:211-220.
Crossref

 
 

Mangelsdorf PC (1961). Introgression in Maize. Euphytica 10:157-168.

 
 

Mano Y, Muraki M, Fujimori M, Takamizo T (2005). Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Jpn. J. Crop Sci. 74:41-46.
Crossref

 
 

Mano Y, Omori F (2007). Breeding for flooding tolerant maize using "teosinte" as a germplasm resource. Plant Root 1:17-21.
Crossref

 
 

Mano Y, Omori F, Takamizo T, Kindiger B, McK BR, Loaisiga CH, Takahashi H (2007). QTL mapping of root aerenchyma formation in seedlings of a maize× rare teosinte "Zea nicaraguensis" cross. Plant Soil 295:103-113.
Crossref

 
 

Masanori Y, Maud IT, Irie VB, Steve GS, Hector SV, John FD, Brandon SG, Michael DM (2005). A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859-2872.
Crossref

 
 

Matsuoka Y, Takumi S (2007). Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115:509-518.
Crossref

 
 

Menkir A, Kling JG, Badu-Apraku B, Ibikunle O (2006). Registration of 26 tropical maize germplasm lines with resistance to Striga hermonthica. Crop Sci. 46:1007-1009.
Crossref

 
 

Miller JF, Seiler GJ (2003). Registration of five oilseed maintainer (HA 429–HA 433) sunflower germplasm lines. Crop Sci. 43:2313-2314.
Crossref

 
 

Moellenbeck DJ, Barry BD, Darrah LL (1995). Tripsacum dactyloides (Gramineae) seedlings for host plant resistance to the western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 88:1801-1803.
Crossref

 
 

Nevo E (2004). Evolution of genome dynamics under ecological stress. In. Parisi V, De Fonzo V, Alluffi-Pentini F (eds) Dynamical genetics. Research Signpost, Keraba, India, ISBN 81:7736-231-3.

 
 

Nevo E, Chen G (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33:670-685.
Crossref

 
 

Nevo E, Korol AB, Beiles A, Fahima T (2002). Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat's progenitor Triticum dicoccoides. Springer, Berlin, 364 p.
Crossref

 
 

Oliver RE, Cai X, Wang RRC, Xu SS, Friesen TL (2008). Resistance to tan spot and Stagonospora nodorum blotch derived from relatives of wheat. Plant Dis. 92:150-157.
Crossref

 
 

Olsen KM, Gross BL (2008). Detecting multiple origins of domesticated crops. Proceedings of the National Academy of Sciences of the United States of America, 105:13701-13702.
Crossref

 
 

Pásztor K, Borsos O (1990). Inheritance and chemical composition in inbred maize (Zea mays L.) × teosinte (Zea mays subsp. mexicana (Schräder) Iltis) hybrids. Növénytermelés 39:193-213.

 
 

Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005). Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ. 28:176-191.
Crossref

 
 

Peleg Z, Fahima T, Saranga Y (2007). Drought resistance in wild emmer wheat: physiology, ecology, and genetics. Isr. J. Plant Sci. 55:289-296.
Crossref

 
 

Petersen G, Seberg O, Yde M, Berthelsen K (2006). Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39:70-82.
Crossref

 
 

Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006). The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed. 125:576-579.
Crossref

 
 

Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Jonhston JS (2005). Genome evolution in the genus Sorghum (Poaceae). Ann. Bot. 95:219-227.
Crossref

 
 

Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006). Genome dependent interspecific hybridisation of Sorghum bicolor (Poaceae). Crop Sci. 46:2617-2622.
Crossref

 
 

Prischmann DA, Dashiell1 KE., Schneider DJ, Eubanks MW (2009). Evaluating Tripsacum-introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae). J. Appl. Entomol. 133:10-20.
Crossref

 
 

Ramirez DA (1997). Gene introgression in Maize (Zea mays ssp mays L.). Philipp. J. Crop Sci. 22:51-63.

 
 

Raskina O, Belyayev A, Nevo E (2002). Repetitive DNAs of wild emmer wheat (Triticum dicoccoides) and their relation to S-genome species: molecular cytogenetic analysis. Genome 45:391-401.
Crossref

 
 

Raskina O, Belyayev A, Nevo E (2004). Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc. Natl. Acad. Sci. USA 101:14818-14823.
Crossref

 
 

Ray JD, Kindiger B, Sinclair TR (1999). Introgressing root aerenchyma into maize. Maydica 44:113-117.

 
 

Reeves RG, Bockholt AJ (1964). Modification and improvement of a maize inbred by crossing it with Tripsacum. Crop Sci. 4:7-10.
Crossref

 
 

Reeves RG, Mangelsdorf PC (1942). A proposed taxonomic change in the tribe Maydeae (family Gramineae). Am. J. Bot. 29:815-817.
Crossref

 
 

Rich PJ, Ejeta G (2008). Towards effective resistance to Striga in African maize. Plant Signal. Behav. 3:618-621.
Crossref

 
 

Risser PE, Birney EC, Blocker H, May S, Parton W, Weins J (1981). The True Prairie Ecosystem. Hutchinson Publishing Co., Stroudsburg, PA.

 
 

Salina EA, Lim KY, Badaeva ED, Shcherban AB, Andrey B, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR (2006). Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023-1035.
Crossref

 
 

Savidan Y, Grimanelli D, Leblanc O (1995). Transferring apomixis from Tripsacum to maize: progress and challenges. In. Taba, S., Ed., Maize Genetic Resources. CIMMYT, Mexico, D.F. pp. 86-92.

 
 

Sayadi Maazou A, Tu J, Qiu J, Liu Z (2016). Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 7:1858-1870.
Crossref

 
 

Sharma HC, Reddy BV, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005). Host plant resistance to insects in sorghum: present status and need for future research. J. Agric. Res. 1:1-8.

 
 

Stalker HT, Harlan JR, De Wet JMJ (1977). Cytology and morphology of maize-Tripsacum introgression. Crop Sci. 17:745-748.
Crossref

 
 

Talbert L, Doebley JF, Larson S, Chandler V (1990). Tripsacum andersonii is a natural hybrid involving Zea and Tripsacum: molecular evidence. Am. J. Bot. 77:722-726.
Crossref

 
 

Wang L, Xu C, Qu M, Zhang J (2008). Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. Cereal Sci. 48:387-393.
Crossref

 
 

Wang XY, Gowik U, Tang HB, Bowers JE, Westhoff P, Paterson AH (2009). Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol. 10(6):R68.
Crossref

 
 

Watson L, Dallwitz MJ (1992). The grass genera of the World. CAB International, Oxon, P. 1038.

 
 

Wei WH, Zhao WP, Song YC, Liu LH, Guo LQ, Gu MG (2003). Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays × Zea diploperennis. Hereditas 138:21-26.
Crossref

 
 

William HB, Michael DM, Brandon SG, John D (2007). Linkage Mapping of Domestication Loci in a Large Maize–Teosinte Backcross Resource. Genetics 177:1915-1928.
Crossref

 
 

Xu SS, Jin Y, Klindworth DL, Wang RRC, Cai X (2009). Evaluation and characterization of seedling resistance to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci. 49:2167-2175.
Crossref

 
 

Zhou H, Deng Y, Li J (1997). Inbred selection from distant hybridization of maize (Zea mays L.) × teosinte (Zea diploperennis L.). Acta Agron. Sin. 23(3):333-337.

 
 

 


APA Abdoul-Raouf, S. M., Qiu, J., Mu, J., & Liu, Z. (2017). Utilization of wild relatives for maize (Zea mays L.) improvement. African Journal of Plant Science, 11(5), 105-113.
Chicago Abdoul-Raouf Sayadi Maazou, Ju Qiu, Jianyu Mu and Zhizhai Liu. "Utilization of wild relatives for maize (Zea mays L.) improvement." African Journal of Plant Science 11, no. 5 (2017): 105-113.
MLA Abdoul-Raouf Sayadi Maazou, et al. "Utilization of wild relatives for maize (Zea mays L.) improvement." African Journal of Plant Science 11.5 (2017): 105-113.
   
DOI 10.5897/AJPS2017.1521
URL http://academicjournals.org/journal/AJPS/article-abstract/E97602863799

Subscription Form