Biotechnology and Molecular Biology Reviews
Subscribe to BMBR
Full Name*
Email Address*

Article Number - 07DB69840318


Vol.8(2), pp. 35-42 , October 2013
DOI: 10.5897/BMBR10.037
ISSN: 1538-2273



Review

Molecular and biological techniques used in landfill investigations: A mini-review


umphrey O. Zebulun*, Hilary I. Inyang and Helene Hilger




Department of Civil and Environmental Engineering, University of North Carolina, Charlotte, NC, USA.


Email: humphzebs@gmail.com






 Accepted: 20 September 2013  Published: 31 October 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The purpose of this research paper was to review the different molecular biology techniques that are used in landfill investigations. The methods discussed include polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH) and phospholipid fatty acid analysis (PLFA). Operation of landfills as bioreactors is now becoming a common practice, which involves the identification of different microbiological activities that facilitate the eventual breakdown of landfill wastes into useful and innocuous materials. In this review, the two important microbial activities that are discussed include methanotrophic process, carried out by methanotrophic bacteria, and methanogenic processes, carried out by methanogenic bacteria. Other bacteria encountered in landfills such as Nitrosospira and Nitrosomonas are also briefly discussed. As the name of these processes imply, methane oxidation and methane production by these microbial activities in landfills constitute another main focus of this paper. The application of these molecular biological techniques in real-time has also been demonstrated in studies involving the investigation of methanogenic diversity and activity in municipal solid waste landfill leachates and this is also discussed further. The results and conclusions of different research studies that focused on these techniques are hereby identified, discussed and summarized.

 

Key words: Bioreactors, polymerase chain reaction (PCR), fluorescent in situ hybridization (FISH), phospholipid fatty acid analysis (PLFA), methanogens, methanotrophs, landfilling.

Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006). Characteristics of methane flux and oxidation at a solid waste landfill. J. Environ. Eng. 132:220-228.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2006)132:2(220)
 
Barlaz MA, Bareither CA, Hossain A, Saquing J, Mezzari I, Benson CH, Yazdani R (2010). Performance of North American Bioreactor Landfills. II: Chemical and Biological Characteristics. J. Environ. Eng. 136(8):839-853.
 
Bodelier PLE, Meima-Franke M, Zwart G, Laanbroek HJ (2005). New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers. FEMS Microbiol. Ecol. 52:163-174.
http://dx.doi.org/10.1016/j.femsec.2004.11.004
PMid:16329903
 
Borjesson G, Chanton J, Svensson BH (2001). Atmospheric pollutants and trace gases: methane oxidation in tow Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J. Environ. Qual. 30:369-376.
http://dx.doi.org/10.2134/jeq2001.302369x
PMid:11285896
 
Borjesson G, Sundh I, Svensson B (2004). Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol. Rev. 48:305-312.
http://dx.doi.org/10.1016/j.femsec.2004.02.006
PMid:19712300
 
Borjesson G, Sundh I, Tunlid A, Svensson BH (1998). Methane oxidation in landfill cover soils, as revealed by potential oxidation measurement and phospholipid fatty acid analyses. Soil Biol. Biochem. 30:1423-1433.
http://dx.doi.org/10.1016/S0038-0717(97)00257-5
 
Charlier RH, Finkl CW, Krystosyk-Gromadzinska A (2012). Throw it overboard: A commentary on coastal pollution and bioremediation. J. Coast. Res. 28(4):881-890.
http://dx.doi.org/10.2112/11A-00020.1
 
Chen AC, Imachi H, Sekiguchi Y, Ohashi A, Harada H (2003). Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol. Lett. 25:719-724.
http://dx.doi.org/10.1023/A:1023458631699
http://dx.doi.org/10.1023/A:1026040012947
http://dx.doi.org/10.1023/A:1022877703008
http://dx.doi.org/10.1023/A:1025036729160
http://dx.doi.org/10.1023/A:1025461915495
PMid:12882173
 
Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003). Molecular detection and direct enumeration of methanogenic archaea and methanotrophic bacteria in domestic solid waste landfill soils. Biotechnol. Lett. 25:1563-1569.
http://dx.doi.org/10.1023/A:1026040012947
http://dx.doi.org/10.1023/A:1023458631699
http://dx.doi.org/10.1023/A:1022877703008
http://dx.doi.org/10.1023/A:1025036729160
http://dx.doi.org/10.1023/A:1025461915495
PMid:14571983
 
Chen Y, Dumont MG, Cébron A, Murrell JC (2007). Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ. Microbiol. 9(11):2855–2869
http://dx.doi.org/10.1111/j.1462-2920.2007.01401.x
PMid:17922768
 
Copty NK, Ergene D, Onay TT (2004). Stochastic model for landfill gas transport and energy recovery. J. Environ. Eng. 130:1042-1049.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2004)130:9(1042)
 
Domingo JWS, Berry CJ, Hazen TC (1997). Use of conventional methods and whole cell hybridization to monitor the microbial response to triethylphosphate. J. Microbiol. Methods 29:145-151.
http://dx.doi.org/10.1016/S0167-7012(97)00024-9
 
Dorigo U, Volatier L, Humbert J-F (2005). Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Res. 39:2207-2218.
http://dx.doi.org/10.1016/j.watres.2005.04.007
PMid:15935436
 
Einola J-KM, Kettunen RH, Rintala JA (2007). Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol. Biochem. 39:1156-1164.
http://dx.doi.org/10.1016/j.soilbio.2006.12.022
 
Frantz JH, Wood RM, Sawyer WK, Delozier DL (2000). Recovery and utilization of methane from solid waste landfills. Proceedings; SPE/CERI Gas Technology Symposium, 3-5 April 2000, Calgary, Alberta, Canada. pp. 9-15.
 
Garcia L-L, Patel BKC, Ollivier B (2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205-226.
http://dx.doi.org/10.1006/anae.2000.0345
PMid:16887666
 
Gupta R, Morris JW (2013). Expanding the options. Civil Engineering, Retrieved September 16, 2013 from http://practices.geosyntec.com/pdf/Expanding-the-Options.pdf.
 
Han JS, Kim CG (2010). Characterization of molecular biological indicators to define stabilization of landfills. Korean J. Chem. Eng. 27: 868-873.
http://dx.doi.org/10.1007/s11814-010-0124-8
 
Han JS, Kim CG (2009). Comparative assessment of gene quanti-fication using real-time PCR and water quality parameters in unsanitary landfill. Water Sci. Technol. 59(2):331-338.
http://dx.doi.org/10.2166/wst.2009.855
PMid:19182345
 
Hanson RS, Hanson TE (1996). Methanotrophic bacteria. Microbiol. Rev. 60:439-471.
PMid:8801441 PMCid:PMC239451
 
Hartlieb N, Ertunc T, Andreas S, Klein W (2003). Mineralization, metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste. Environ. Pollut. 126:83-91.
http://dx.doi.org/10.1016/S0269-7491(03)00143-X
 
He, R., Ruan, A., Jiang, C., and Shen, D. (2008). Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresource Technology, 99(15), 7192-7199.
http://dx.doi.org/10.1016/j.biortech.2007.12.066
PMid:18294841
 
He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM, Leigh MB (2012). Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14(6):1403–1419.
http://dx.doi.org/10.1111/j.1462-2920.2012.02725.x
PMid:22429394
 
Henneberger R, Chiri E, Blees J, Niemann H, Lehmann MF, Schroth MH (2013). Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil. FEMS Microbiol. Ecol. 83(2):392-401.
http://dx.doi.org/10.1111/j.1574-6941.2012.01477.x
PMid:22928887
 
Hilger HA, Wollum AG, Barlaz MA (2000). Landfill methane oxidation response to vegetation, fertilization, and liming. J. Environ. Qual. 29: 324-334.
http://dx.doi.org/10.2134/jeq2000.291324x
http://dx.doi.org/10.2134/jeq2000.00472425002900010041x
 
Hunt M (2006). Real time PCR. Retrieved September 20, 2006 from http://pathmicro.med.sc. edu/pcr/realtime-home.htm.
 
Jung Y, Imhoff PT, Augenstein DC, Yazdani R (2009). Influence of High-Permeability Layers for Enhancing Landfill Gas Capture and Reducing Fugitive Methane Emissions from Landfills. J. Environ. Eng. 135(3):138-146.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2009)135:3(138)
 
Kallistova AU, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola JM, Kulomaa MS, Nozhevnikova AN (2007). Enumeration of Methanotrophic Bacteria in the Cover Soil of an Aged Municipal Landfill. Microb. Ecol. 54(4):637-645.
http://dx.doi.org/10.1007/s00248-007-9219-0
PMid:17323117
 
Kim D-J, Dong L, Keller J (2006). Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour. Technol. 97:459-468.
http://dx.doi.org/10.1016/j.biortech.2005.03.032
PMid:15927463
 
Kong JY, Su YY, Zhang QQ, Bai YY, Xia FF, Fang CR, He RR (2013). Vertical profiles of community and activity of methanotrophs in landfill cover soils of different age. J. Appl. Microbiol.115(3):756-765.
http://dx.doi.org/10.1111/jam.12263
PMid:23725010
 
Laloui-Carpentier W, Li T, Vigneron V, Mazeas L, Bouchez T (2006). Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie van Leeuwenhoek 89:423-434.
http://dx.doi.org/10.1007/s10482-005-9051-9
PMid:16779637
 
Latorre I, Hwang S, Montalvo-Rodriguez R (2012). Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 47(14):2254-2262.
http://dx.doi.org/10.1080/10934529.2012.707549
PMid:22934997 PMCid:PMC3432978
 
Li Y, Cleall PJ (2010). Analytical solutions for contaminant diffusion in double-layered porous media. J. Geotechn. Geoenviron. Eng. 136(11):1542-1554.
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000365
 
Limam RD, Bouchez T, Chouari R, Li T, Barkallah I, Landoulsi A, Sghir A (2010). Detection of WWE2-related Lentisphaerae by 16S rRNA gene sequencing and fluorescence in situ hybridization in landfill leachate. Can. J. Microbiol. 56:846–852.
http://dx.doi.org/10.1139/W10-065
PMid:20962908
 
Lockhart RJ, Dyke MIV, Beadle IR, Humphreys P, McCarthy AJ (2006). Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl. Environ. Microbiol. 72: 5659-5661.
http://dx.doi.org/10.1128/AEM.01057-06
PMid:16885325 PMCid:PMC1538735
 
Lowry MI, Bartelt-Hunt SL, Beaulieu SM, Barlaz MA (2008). Development of a coupled reactor model for prediction of organic contaminant fate in landfills.Environ. Sci. Technol. 42(19):7444-7451.
http://dx.doi.org/10.1021/es800907j
PMid:18939584
 
Ludvigsen L, Albrechtsen H-J. Holst H, Christensen TH (1997). Correlating phospholipid fatty acids (PFLA) in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods. FEMS Microbiol. Rev. 20:447-460.
http://dx.doi.org/10.1111/j.1574-6976.1997.tb00329.x
 
Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs K, Strous M, Jetten MS (2012). Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environ. Microbiol. 14(4):1024–1034. emi_2682 1024..
 
Maxfield PJ, Brennand EL, Powlson DS, Evershed RP (2011). Impact of land management practices on high-affinity methanotrophic bacterial populations: evidence from long-term sites at Rothamsted. Europ. J. Soil Sci. 62:56-68.
http://dx.doi.org/10.1111/j.1365-2389.2010.01339.x
 
McDonald JE, Houghton JN, Rooks DJ, Allison HE, McCarthy AJ (2012). The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters. Environ. Microbiol. 14(4):1077–1087.
http://dx.doi.org/10.1111/j.1462-2920.2011.02688.x
PMid:22225785
 
McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008). Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ. Microbiol. 10(5):1310-1319.
http://dx.doi.org/10.1111/j.1462-2920.2007.01544.x
PMid:18266756
 
Mehta R, Barlaz MA, Yazdani R, Augenstein D, Bryars M, Sinderson L (2002). Refuse decomposition in the presence and absence of leachate recirculation. J. Environ. Eng. 128:228-236.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2002)128:3(228)
 
Mellendorf M, Huber-Humer M, Gamperling O, Huber P, Gerzabek MH, Watzinger A (2010). Characterisation of microbial communities in relation to physical–chemical parameters during in situ aeration of waste material. Waste Manage. 30(11):2177-2184.
http://dx.doi.org/10.1016/j.wasman.2010.04.023
PMid:20483579
 
Mer JL, Roger P (2001). Production, oxidation, emission and consumption of methane by soils. a review. Europ. J. Soil Biol. 37: 25-50.
http://dx.doi.org/10.1016/S1164-5563(01)01067-6
 
Mnif S, Zayen A, Karray F, Bru-Adan V, Loukil S, Godon J, Sayadi S (2012). Microbial population changes in anaerobic membrane bioreactor treating landfill leachate monitored by single-strand conformation polymorphism analysis of 16S rDNA gene fragments. Int. Biodeterior. Biodegradation 73:50-59.
http://dx.doi.org/10.1016/j.ibiod.2012.04.014
 
Mohammadi T, Pietersz RN, Vandenbroucke-Grauls CM, Savelkoul PH, Reesink HW (2005). Detection of bacteria in platelet concentrates: comparison of broad-range real-time 16S rDNA polymerase chain reaction and automated culturing. Transfusion 45:731-736.
http://dx.doi.org/10.1111/j.1537-2995.2005.04258.x
PMid:15847662
 
Mojiri A, Aziz AH, Aziz SQ (2013). Trends in Physical-Chemical Methods for Landfill Leachate Treatment. Int. J. Sci. Res. Environ. Sci. 1(2):16-25.
 
Mor S, Ravindra K, Visscher AD, Dahiya RP, Chandra A (2006). Municipal solid waste characterization and its assessment for potential methane generation: a case study. Sci. Total Environ. 371:1-10.
http://dx.doi.org/10.1016/j.scitotenv.2006.04.014
PMid:16822537
 
Nakamura K, Terada T, Seiguchi Y, Shinzato N, Meng X-Y, Enoki M, Kamagata Y (2006). Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl. Environ. Microbiol. 72:6907-6913.
http://dx.doi.org/10.1128/AEM.01499-06
PMid:16950902 PMCid:PMC1636154
 
National Human Genome Institute (2007). Florescence in situ hybridization (FISH). Fact Sheet. Retrieved May 31, 2007 from http://www.accessexcellence.org/RC/VL/GG/ nhgri_ PDFs/ fish_TXT.pdf.
 
Nozhevnikova AA, Glagolev MM, Nekrasova VV, Einola JJ, Sormunen KK, Rintala JJ (2003). The analysis of methods for measurement of methane oxidation in landfills. Water Sci. Technol. 48(4):45-52.
PMid:14531421
 
Pombo SA, Kleikemper J, Schroth MH, Zeyer J (2005). Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria. FEMS Microbiol. Ecol. 51(2):197-207.
http://dx.doi.org/10.1016/j.femsec.2004.08.010
PMid:16329868
 
Powelson DK, Chanton J, Abichou T, Morales J (2006). Methane oxidation in water-spreading and compost biofilters. Waste Manage. Res. 24:528-536.
http://dx.doi.org/10.1177/0734242X06065704
PMid:17252999
 
Providenti MA, Mautner SI, Chaudhry O, Bombardier M, Scroggins R, Gregorich E, Smith ML (2004). Determining the environmental fate of a filamentous fungus, Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viable plating. Can. J. Microbiol. 50:623-631.
http://dx.doi.org/10.1139/w04-053
PMid:15467788
 
Rachor IM, Gebert JJ, Gröngröft AA, Pfeiffer EM (2013). Variability of methane emissions from an old landfill over different time-scales. Europ. J. Soil Sci. 64(1):16-26.
http://dx.doi.org/10.1111/ejss.12004
 
Ran Y, Ping G, MacKay AA, Shouliang Z, Smets BF (2010). Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. FEMS Microbiol. Ecol. 71(2):260-271.
http://dx.doi.org/10.1111/j.1574-6941.2009.00797.x
PMid:19909343
 
Reinhart DR (1993). A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: a U.S. experience. Waste Manage. Res. 11:257-268.
http://dx.doi.org/10.1006/wmre.1993.1025
http://dx.doi.org/10.1177/0734242X9301100307
 
Ren L, Li H, Lu W (2012). Response of community structure and activity of methanotroph to different CH4/O2 ratios. Procedia Environ. Sci. 16:697 – 704.
http://dx.doi.org/10.1016/j.proenv.2012.10.096
 
Riesenfeld CS, Schloss PD, Handelsman J (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552.
http://dx.doi.org/10.1146/annurev.genet.38.072902.091216
PMid:15568985
 
Sanchez R, Hashemi M, Tsotsis TT, Sahimi M (2006). Computer simulation of gas generation and transport in landfills II: dynamic conditions. Chem. Eng. Sci. 61:4750-4761.
http://dx.doi.org/10.1016/j.ces.2006.03.014
 
Sanz JL, Kochling T (2007). Molecular biology techniques used in wastewater treatment: an overview. Process Biochem. 42:119-133.
http://dx.doi.org/10.1016/j.procbio.2006.10.003
 
Srivastava AK, Nema AK (2011). Fuzzy Parametric Programming Model for Integrated Solid Waste Management under Uncertainty. ASCE J. Environ. Eng. 137(1):69-83.
http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000300
 
Staley BF, de los Reyes FL, Barlaz MA (2012). Comparison of B acteria and A rchaea communities in municipal solid waste, individual refuse components, and leachate. FEMS Microbiol. Ecol. 79(2):465-473.
http://dx.doi.org/10.1111/j.1574-6941.2011.01239.x
PMid:22092358
 
Stralis-Pavese N, Bodrossy L, Rechenauer TG, Weilharter A, Sessitsch A (2006). 16S rRNA based T-RFLP analysis of methane oxidizing bacteria – assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl. Soil Ecol. 31:251-266.
http://dx.doi.org/10.1016/j.apsoil.2005.05.006
 
Stralis-Pavese N, Sessitsch A, Weilharter A, Rechenauer T, Riesing J, Csontos J, Murrel JC, Bodrossy L (2004). Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers. Environ. Microbiol. 6:347-363.
http://dx.doi.org/10.1111/j.1462-2920.2004.00582.x
PMid:15008813
 
Sundberg C, Stendahl JS, Tonderski K, Lindgren P-E (2007). Overland flow systems for treatment of landfill leachates – potential nitrification and structure of the ammonia-oxidizing bacterial community during a growing season. Soil Biol. Biochem. 39:127-138.
http://dx.doi.org/10.1016/j.soilbio.2006.06.016
 
Themelis NJ, Ulloa PA (2007). Methane generation in landfills. Renew. Energy 32:1243-1257.
http://dx.doi.org/10.1016/j.renene.2006.04.020
 
Tolaymat TM, Green RB, Hater GR, Barlaz MA, Black P, Bronson D, Powell J (2010). Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors. J. Air Waste Manage. Assoc. 60:91-97.
http://dx.doi.org/10.3155/1047-3289.60.1.91
 
Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J (2009). Response of methanotrophic activity and community structure to temperature changes in a diffusive CH4/O2 counter gradient in an unsaturated porous medium. FEMS Microbiol. Ecol. 69(2):202-212.
http://dx.doi.org/10.1111/j.1574-6941.2009.00708.x
PMid:19496819
 
Van Dyke MI, McCarthy AJ (2002). Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl. Environ. Microbiol. 68:2049-2053.
http://dx.doi.org/10.1128/AEM.68.4.2049-2053.2002
PMid:11916731 PMCid:PMC123838
 
Vishwakarma P, Dubey SK (2010). DNA microarray analysis targeting pmoA gene reveals diverse community of methanotrophs in the rhizosphere of tropical rice soils. Curr. Sci. 99(8):1090-1095.
 
Visvanathan C, Pokhrel D, Cheimchaisri W, Hettiaratchi JPA, Wu JS (1999). Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manage. Res. 17:313-323.
http://dx.doi.org/10.1034/j.1399-3070.1999.00052.x
http://dx.doi.org/10.1177/0734242X9901700408
 
Wang C, Lee P, Kumar M, Huang Y, Sung S, Lin J (2010). Simulta-neous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J. Hazard. Mater. 175(1-3):622-628.
http://dx.doi.org/10.1016/j.jhazmat.2009.10.052
PMid:19913994
 
Watzinger A, Stemmer M, Pfeffer M, Rasche F, Reichenauer TG (2008). Methanotrophic communities in a landfill cover soil as revealed by [13C] PLFAs and respiratory quinones: Impact of high methane addition and landfill leachate irrigation. Soil Biol. Biochem. 40(3):751-762.
http://dx.doi.org/10.1016/j.soilbio.2007.10.010
 
Yang N, Lu F, He P, Shao L (2011). Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Appl. Microbiol. Bitechnol. 92:1073-1082.
http://dx.doi.org/10.1007/s00253-011-3389-x
PMid:21670975
 
Yu Y, Lee C, Kim J, Hwang S (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89:670-679.
http://dx.doi.org/10.1002/bit.20347
PMid:15696537
 
Zhou M, Chung YH, Beauchemin KA, Holtshausen L, Oba M, McAllister TA, Guan LL (2011). Relationship between rumen methanogens and methane production in dairy cows fed diets supplemented with a feed enzyme additive. J. Appl. Microbiol. 111:1148-1158.
http://dx.doi.org/10.1111/j.1365-2672.2011.05126.x
PMid:21848695

 


APA (2013). Molecular and biological techniques used in landfill investigations: A mini-review. Biotechnology and Molecular Biology Reviews, 8(2), 35-42.
Chicago umphrey O. Zebulun, Hilary I. Inyang and Helene Hilger. "Molecular and biological techniques used in landfill investigations: A mini-review." Biotechnology and Molecular Biology Reviews 8, no. 2 (2013): 35-42.
MLA umphrey O. Zebulun, Hilary I. Inyang and Helene Hilger. "Molecular and biological techniques used in landfill investigations: A mini-review." Biotechnology and Molecular Biology Reviews 8.2 (2013): 35-42.
   
DOI 10.5897/BMBR10.037
URL http://academicjournals.org/journal/BMBR/article-abstract/07DB69840318

Subscription Form