Biotechnology and Molecular Biology Reviews
Subscribe to BMBR
Full Name*
Email Address*

Article Number - 9AA790354184


Vol.10(3), pp. 19-38 , July 2015
DOI: 10.5897/BMBR2015.0246
ISSN: 1538-2273



Review

The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa



Bitrus Yakubu*
  • Bitrus Yakubu*
  • Applied Molecular Biology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
  • Google Scholar
Andrew J. Nok
  • Andrew J. Nok
  • Department of Biochemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
  • Google Scholar
Owolodun O. A.
  • Owolodun O. A.
  • Applied Molecular Biology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
  • Google Scholar
Luka P. D.
  • Luka P. D.
  • Applied Molecular Biology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
  • Google Scholar
Umaru Dunkura Ali
  • Umaru Dunkura Ali
  • Department of Biotechnology, Modibbo Adama University of Technology Yola, Adamawa State, Nigeria
  • Google Scholar







 Received: 19 February 2015  Accepted: 30 June 2015  Published: 30 July 2015

Copyright © 2015 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Africa is experiencing reoccurrence of avian influenza outbreaks with huge negative impact on the economy of the continent as a result of high mortality rate and extreme contagiousness of the disease. The epidemiology of highly pathogenic avian influenza (HPAI) in Africa during the 2006-2008 outbreaks was complex and linked to movements of poultry commodities and wild birds. The peculiar risk factors, negative economic impact and the potential of being used as a biological weapon necessitates the development of a comprehensive control programme for the prevention or eradication of the disease. It is the opinion of this paper that development of new influenza vaccine technologies will provide affordable comprehensive control programmes for avian influenza prevention in Africa. To keep pace with the variability of the viruses, there is need for frequent redesign of avian influenza (AI) vaccines to match the circulating subtypes and on this is predicated the necessity of the development of influenza vaccine technology for a country, zone or region. The new vaccine technologies have been shown to have the potentials of giving vaccines with required criteria of purity, safety, efficacy, potency, low cost and short response time. The concept of most new vaccine technologies is biased towards removal of influenza virus from the system of vaccine development and at the same time obtaining more effective, potent and safe influenza vaccines. The new influenza vaccine technologies include gene-based, genomics-based, subunit, plant-based, VLPs and universal vaccine technologies. These technologies have the potential to provide vaccines that will not just be used as intervention strategies to lessen severity of the disease but as preventative vaccination. Also routine vaccination will not just be as a tool of last option in disease endemic areas, but one to prevent the disease.

Key words: Technologies, avian influenza, vaccine, eradication, prevention, comprehensive, control, programme.

 

Aguilar-Yanez JM, Portillo-Lara R, Mendoza-Ochoa GI, Garcia-Echauri SA, Lopez-Pacheco F, et al.(2010). An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. Plos One 5:e11694.
Crossref

 
   

Asahi-Ozaki Y, Itamura S, Ichinohe T, Strong P, Tamura S, Takahashi H, Sawa H, Moriyama M, Tashiro M, Sata T, Kurata T, Hasegawa H (2006). Intranasal administration of adjuvant-combined recombinant Influenza virus HA vaccine protects mice from the lethal H5N1 virus infection. Microbes Infect. 8: 2706-2714.
Crossref

   
   

Atkins HS, Morton M, Griffin KF, Stokes MG, Nataro JP, Titball RW(2006). Recombinant Salmonella vaccines for biodefence. Vaccine 24:2710-2717.
Crossref

   
   

Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD(19944). The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586-605.
Crossref

   
   

Behzadian F, Goodarzi Z, Fotouhi F, Saberfar E(2013). Baculoviral co-expression of HA, NA, & M1 proteins of highly pathogenic H5N1 influenza virus in insect cells. Jundishapur J. Microbiol. 6(9): e7665. Bermṹdez-Humaran LG, Kharrat P, Chatel D-M, Langella P (2011). Lactococci and Lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 10(Suppl1):S4.

   
   

Boyle DB, Anderson M-A, Amos R, Voysey R, Coupar BEH (2004). Construction of recombinant fowlpox viruses carrying multiple vaccine antigens and immunomodulatory Molecules. Biotechniques 37:104-111.
Pubmed

   
   

Bright RA, Ross TM, Subbarao K, Robinson HL, Katz JM(2003). Impact of glycosylation on the immunogenicity of a DNA-based influenza H5 HA vaccine. Virology 308(2):270-278.
Crossref

   
   

Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, Liu W, Cook DN, Portnoy, Dubensky TW Jr.(2004). Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl. Acad. Sci. USA 101:13832-13837.
Crossref

   
   

Brun A, Albina E, Barret T, Chapman DAG, et al., (2008). Antigen delivery systems for veterinary vaccine development viral -vector based delivery systems. Vaccine 26:6508- 6528.
Crossref

   
   

Bublot M, Manvel, RJ, Shell W, Brown I.H.(2010). High level of protection induced by two fowlpox vector vaccines against a highly pathogenic avian influenza H5N1 challenge in specific-Pathogen-free chickens. Avian Dis. 54:257-261.
Crossref

   
   

Capua I, Terregino C, Cattoli G, Toffan A (2004). Increased resistance of vaccinated turkeys to experimental infection with an H7N3 low-pathogenicity avian influenza virus. Avian Pathol. 33: 158 -163.
Crossref

   
   

Cattoli G, Monne I, Fusaro A, Joannis TM, Lombin LH(2009). Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates. PLoS One 4(3):e4842.
Crossref

   
   

Chen GL, Lamirande EW, Jin H, Kemble G, Subbarao K (2010). Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets. Virology 398: 109-114.
Crossref

   
   

Chen Y, Qin K, Wu WL, Li G, Zhang J, Du H, et al.(2009). Broad cross-protection against H5N1 avian influenza virus infection by means of monoclonal antibodies that map to conserved viral epitopes. J Infect Dis. 199(1):49-58.
Crossref

   
   

Cheung TKW, Poon LLM(2007). Biology of Influenza A Virus. Ann. N.Y. Acad. Sci. 1102:1-25.
Crossref

   
   

Chichester JA, Haaheim LR, Yusibov V (2009). Using plant cells as influenza vaccine substrate. Expert Rev. Vaccines 8(4):493-498.
Crossref

   
   

Contreras-Gomez A, Sánchez-Miron A, Garcia-Camoche F, Molina-Grima E, Christi Y(2014). Protein production using the baculovirus-insect cell expression system. Biotechnol. Prog. 30(1):1-18.
Crossref

   
   

Corti D, Lanzavecchia A (2013). Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31: 705-742.
Crossref

   
   

Coughlan L, Mullarkey C, Gibert S (2014). Adenoviral vectors as novel vaccines for influenza. J. Pharm. Pharmacol. 67: 382-399.
Crossref

   
   

Cui Z, Mumper RJ (2002). Genetic immunization using nanoparticles engineered from microemulsion precursors. Pharm. Res. 19(7): 939-46.
Crossref

   
   

D'Aoust M-A, Couture M, Ors F, Tre´panier S, Lavoie P-O, Dargis M, Ve´zina L-P (2009). Recombinant influenza virus-like particles (VLPs) produced in transgenic plants expressing hemagglutinin. International Patent application; wo2009/076778.

   
   

D'Aoust M-A, Lavoie P-O, Couture MM-J, Tre’panier S, Guay J-M, Dargis M, Mongrand S, Landry N, Ward BJ, Ve’zina, L-P(2008). Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 6: 930-940.
Crossref

   
   

D'Aoust M-A, Couture MM-J, Charland N, Trepanier S, Landry N, Ors F, Vezina P-L(2010). The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 8: 607-619.
Crossref

   
   

De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, Saelens X, Fiers W(2006). The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24:544-551.
Crossref

   
   

Dharmapuri S, Peruzzi D, Aurisicchio L(2009). Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin. Biol. Ther. 9:1279-1287.
Crossref

   
   

DiNaploi JM, Yang L, Suguitan A Jr., Elankumaran S, Dorward DW, et al. (2007). Immunization of primates with a newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J. Virol. 81:11560-11568.
Crossref

   
   

DiNapoli JM, Nayak B, Yang L, Finneyfrock BW et al.(2010). Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of H5N1 highly pathohenic avian influenza virus protect against virus challenge in monkeys. J. Virol. 84(4):1489 -1503.
Crossref

   
   

Dong J, Matsuoka Y, Maines TR, et al.(2009). Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production. Influenza Other Respi. Viruses 3:287-295.
Crossref

   
   

Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Giudice GD, Rappuoli, R(2011). Influenza vaccine immunology. Immunol. Rev. 239:167 - 177.
Crossref

   
   

Draper SJ, Heeney J(2010). Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 8:62-73.
Crossref

   
   

Druper SJ, Moore AC, Goodman AL, et al. (2008). Effective induction of high-titer antibodies of viral vector vaccines. Nat. Med. 14:819-821.
Crossref

   
   

DuBois RM, Aguilar-Yanez JM, Mendoza-Ochoa GI, Oropeza-Almazan Y, Schultz-Cherry S, Alvarez MM, White SW, Russell CJ (2011). The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J. Virol. 85:865-872.
Crossref

   
   

Edwards MJ, Dimmock NJ(2001). A haemagglutinin (HA1)-specific FAb neutralizes influenza A virus by inhibiting fusion activity. J. Gen. Virol. 82:1387-1395.
Pubmed

   
   

Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009). Antibody recognition of highly conserved influenza virus epitope. Science 324:246-251.
Crossref

   
   

Ellebedy AH, Webby RJ (2009). Influenza vaccines. Vaccine 27:D65-D68.
Crossref

   
   

Elliot A(2012). Comparing influenza virus hemagglutinin(HA) expression in three different baculovirus expression system. M.Sc Thesis. The University of Guelph, Canada.

   
   

Eloit M, Gilardi-Hebenstreit P, Toma B, Perricaudet M (1990). Construction of a defective adenovirus vector expressing the pseudorabies V, irus glycoprotein gp50 and its use as a live Vaccine. J. Gen. Virol. 71:2425-2431.
Crossref

   
   

Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, Nabel GJ (2005). Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23 (46-47):5404 -5410.
Crossref

   
   

Ernst WA, Kim HJ, Tumpey TM, Jansen AD, Tai W, Cramer DV, Adler- Moore JP Fujii G(2006). Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 24:5158-5168.
Crossref

   
   

Evans RK, Nawrocki DK Isopi LA, Williams DM, Casimiro DR, Chin S, Chen M, Zhu DM, Shiver JW, Volkin DB(2004). Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 93:2458-2475.
Crossref

   
   

Eypper HE, Johnson VP, Purro IE, Hohmann LE (2013). Transcutaneous immunization of healthy volunteers with an attenuated Listeria monocytogenes vaccine strain and cholera toxin adjuvant. Vaccine 31:3257-3261.
Crossref

   
   

Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM, Garsky VM, Ionescu R, Rippeon Y, Shi L, Chastain MA, Condra JH, Davies ME, Liao J, Emini EA, Shiver JW(2004). Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993-3003.
Crossref

   
   

Fan X, Hu Y, Zhang G, Wang M(2015). Veterinary influenza vaccines against avian influenza in China. Future Virol. 10(5):585-595.
Crossref

   
   

Fang R, Feng H, Nie H, et al. (2010). Construction and immunogenicity of pseudotype baculovirus expressing toxoplasma gondii SAG1 Protein in BALB/c Mice Model. Vaccine 28:1803-1807.
Crossref

   
   

Felberbaum RS(2015). The baculovirus expression vector sysyem:a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 10(5):702-714.
Crossref

   
   

Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W(2004). A "universal" human influenza a vaccine. Virus Res. 103:173-176.
Crossref

   
   

Fouchier RA, Munster V, Wallensten A, et al. (2005). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from blackheaded gulls. J. Virol. 79: 2814-2822.
Crossref

   
   

Fuchs W, Rӧmer-Oberdӧrfer A, Veits J, Mettenleiter TC(2009). Novel avian influenza virus vaccines. Rev. Sci. Tech. Off. Epiz. 28(1):319 - 332.

   
   

Fusaro A, Joannis TM, Monne I, Salviato A, Yakubu B, Meseko C, Oladokun T, Fassina S, Capua I, Cattoli G (2009). Introduction into Nigeria of a distinct genotype of avian influenza virus (H5N1). Emerg. Infect. Dis. 15(3):445-447.
Crossref

   
   

Fusaro A, Nelson IM, Joannis TM, Bertolotti L, Monne I, Salviato A, Olaleye O, Shittu I, Slaiman L, Lombin HL, Capua I, Holmes CE, Cattoli G (2010). Evolutionary dynamics of multiple sublineages of H5N1 influenza viruses in Nigeria from 2006 to 2008. J Virol. 84: 3239 - 3249.
Crossref

   
   

Gaidet N, Cattoli G, Hammoumi S, Newman SH, Hagemeijer W, et al. (2008). Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 4(8):e1000127.
Crossref

   
     

 

Galarza JM, Latham T, Cupo A (2005). Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol. 18:244-251.
Crossref

 

Galloway AL, Murphy A, DeSimone JM, Di J, Herrmann JP, Hunter ME, Kindig JP, Malinoski FJ, Rumley MA, Stoltz DM, Templeman TS, Hubby B(2013). Development of a nanoparticle-based influenza vaccine using the PRINT® technology. Nanomedicine 9:523-531.
Crossref

 
 

Ge J, Deng G. Wen Z, Tian G, Wang Y, et al. (2007). Newcastle disease virus based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J. Virol. 81:150-158.
Crossref

 
 

Gerhard W, Mozdzanowska K, Zharikova D(2006). Prospects for universal influenza virus vaccine. Emerg. Infect. Dis. 12: 569-574.
Crossref

 
 

Ghendon YZ, Markushin SG, Akopova II, Koptiaeva IB, Nechaeva EA, Mazurkova LA, Radaeva IF, Kolololtseva TD(2005). Development of cell culture(MDCK) live cold-adapted(CA) attenuated influenza vaccine. Vaccine 4678-4684.
Crossref

 
 

Ghosh S, Parvez MDK, Banerjee K, Sarin SK, Hanain SE(2002). Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol. Ther. 6(1):5-11.
Crossref

 
 

Gocník M, Fislová T, Sládková T, Mucha V, Kostolanský F, Varecková E (2007). Antibodies specific to the HA2 glycopolypeptide of influenza A virus Haemagglutinin with fusion-inhibition activity contribute to the protection of mice against lethal infection. J. Gen. Virol. 88: 951-955.
Crossref

 
 

Gregory AE, Titball R, Williamson D(2013). Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 3(13):1-13.
Crossref

 
 

Hargis BM, Layton LS, Kapczynski RD, Cole K, Cox MM, Kwon MY, Berghman RL, Liljebjelke K, Bottje JW(2008). Development and evaluation of a potential universal salmonella-vectored AI vaccine. Poult. Sci. Assoc. Keynote Symp. Poult. Sci. Savoy I.L. (Abstract).

 
 

Hartman ZC, Appledorn DM, Amalfitano A(2008). Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res. 132:1-14.
Crossref

 
 

He F, Madhan S, Kwang J(2009). Baculovirus vector as a delivery vehicle for influenza vaccines. Expert Rev Vaccines 8: 455 - 67.
Crossref

 
 

Hess RD, Weber F, Watson K, Schmitt S (2012). Regulatory, biosafety and safety challenges for novel cells as substrates for human vaccines. Vaccine 30:2715-2727.
Crossref

 
 

Hoelscher M, Gangappa S, Zhong W, Jayashankar, Sambhra S(2008). Vaccines against epidemic and pandemic influenza. Expert Opin. Drug Deliv. 5(10):1139-1157.
Crossref

 
 

Hoffmann E, Krauss S, Perez D, Webby R, Webster RG (2002). Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20:3165-3170.
Crossref

 
 

Hoffmann E, Stech J, Leneva I, et al.(2000). Characterization of the influenza A gene pool in avian species in Southern China: was H6N1 a derivative or a precursor of H5N1. J. Virol. 74:6309-6315.
Crossref

 
 

Hovden OA, Cox RJ, Haaheim LR (2005). Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice. Scand. J. Immunol. 62: 36 - 44.
Crossref

 
 

Hu AYC, Weng TC, Tseng YF, Chen YS, Wu CH, Hsiao S, Chou AH, Chao HJ, Gu A, Wu SC, Chong P, Lee MS(2008). Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine 26:5736-5740.
Crossref

 
 

Huang Z, Krishnamurthy S, Panda A, Samal SK(2001). High-level Expression of a Foreign Gene from the most 3' - Proximal Locus of a Recombinant Newcastle Disease Virus. J. Gen. Virol. 82:1729-1756.
PMid:11413385

 
 

Huang Z, Elankumaran S, Panda A, Samal KS(2003). Recomninant newcastle disease virus as a vaccine vector. Poult. Sci. 82:899 - 906.
Crossref

 
 

Hueatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonal W, Song L, Evans RK, Umlauf S, Tussey L, Powell TJ(2008). Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26:201-214.
Crossref

 
 

Ikonomidis G, Portnoy AD, Gerhard W, Paterson, Y(1997). Influenza-specific immunity induced by recombinant Listeria monocytogenes vaccines. Vaccines 15(4):433-440.
Crossref

 
 

Imai M, Sugimoto K, Okazaki K, Kida H (1998). Fusion of influenza virus with the endosomal membrane is inhibited by monoclonal antibodies to defined epitopes on the hemagglutinin. Virus Res. 53:129-139.
Crossref

 
 

Imler JL (1995). Adenovirus vectors as recombinant viral vaccines. Vaccine 13(13):1143-1151.
Crossref

 
 

Jennings R, Pemberton RM, Smith TL, Amin T, Potter CW (1987). Demonstration of an immunosuppressive action of detergent disrupted influenza virus on the antibody response to inactivated Whole virus vaccine. J. Gen. Virol. 68:441-450.
Crossref

 
 

Jin R, Lv Z, Chen Q, Quan Y, Zhang H, et al. (2008). Safety and immunogenicity of H5N1 influenza vaccine based on baculovirus surface display system of Bombyx mori. PLoS One 3(12): e3933.
Crossref

 
 

Joannis TM, Meseko CA, Oladokun AT, Ularamu HG, et al. (2008). Serological and virologic surveillance of avian influenza in Nigeria, 2006-2007. Eurosurveillance 13(42):1- 5.

 
 

Johnson PV, Blair BM, Zeller S, Kotton CN, Hohmann EL (2011). Attenuated Listeria monocytogenes vaccine vectors expressing influenza A nucleoprotein: preclinical evaluation and oral inoculation of volunteers. Microbiol. Immunol. 55(5):304-317.
Crossref

 
 

Jones SM, Feldmann H, Stroher U, Geisber, JB, Fernando L, Grolla A, Klenk H-D, Sullivan NJ, Volchkov VE, Fritz EA, et al.(2005). Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 11:786 -790.
Crossref

 
 

José da Silva A, Zangirolami TC, Novo-Mansur MTM, Giordano RC, Martins EAL (2014). Live bacterial vaccine vectors: an overview. Braz. J. Microbiol. 45(4):1117-1129.
Crossref

 
 

Josefsberg JO, Buckland B (2012). Vaccine process technology. Biotechnol Bioeng. 109:1443 -1460.
Crossref

 
 

Jul-Larsen A, Madhun AS, Brokstad KA, Montomoli E, Yusibov V, Cox RJ(2012). The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants. Hum. Vaccin. Immunother. 8(5): 653-661.
Crossref

 
 

Kallel H, Kamen AA(2015). Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol. J. 10:741-747.
Crossref

 
 

Kalthoff D, Giritch A, Geisler K, Bertmann U, Klimyuk V, Hehnen H-R, Gleba Y, Beer M(2010). Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J. Virol. 84(22):12002 - 12010.
Crossref

 
 

Kanagarajan S, Tolf C, Lundgren A, Waldenstrom J, Brodelius PE(2012). Transient expression of hemagglutinin antigen from low pathogenic avian influenza A(H7N7) in Nicotiana benthamiana. PLoS One 7(3):e33010.
Crossref

 
 

Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong WY, Wang L, Label GJ(2013). Self-assembling influenza nanoparticle vaccines broadly neutralizing H1N1 antibodies. Nature 499(7456):102-6.
Crossref

 
 

Kaslow DC (2004). A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases. Trans. R. Soc. Trop. Med. Hyg. 98: 593 - 601.
Crossref

 
 

Kemble G, Greenberg H(2003). Novel generations of influenza vaccines. Vaccine 21:1789 -1795.
Crossref

 
 

Khurana S, Wu J, Verma N, Verma S, Raghunandan R, Manischewitz J, et al.(2011). H5N1 Virus-like particle vaccine elicits cross-reactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. J. Virol. 85:10945 - 54.
Crossref

 
 

Kim EH, Park HL, Han GY, Song MK, Pereboev A, Hong JS, Chang J, Byan YH, Seong BL, Nguyen HH(2014). Intranasal adenovirus vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J. Virol. 88(17):9693-9703.
Crossref

 
 

Kim SH, Paldurai A, Xiao S, Collins PL, Samal SK (2014). Modified newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens. Vaccine 32(36): 4428 - 4436.
Crossref

 
 

Kotton NC, Hohmann LE (2004). Enteric pathogens as vaccine vectors for foreign antigen delivery. Infect. Immun. 72(10): 5535 -5547.
Crossref

 
 

Kovesdi I, Hedley SJ (2010). Adenoviral producer cells. Viruses 2: 1681-1703.
Crossref

 
 

Krammer F, Pica N, Hai R, Palese P (2013). Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87(12):6542 - 6550.
Crossref

 
 

Kreijtz JHCM, Osterhaus ADME, Rimmelzwaan GF(2009). Vaccination strategies and vaccine formulations for epidemic and pandemic influenza control. Hum. Vaccin. 5(3):126 - 135.
Crossref

 
 

Krishnamurthy S, Huang Z, Samal SK(2000). Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 278:168 - 182.
Crossref

 
 

Kumar S, Daniell H (2004). Engineering the chloroplast genome for hyper-expression of human therapeutic proteins and vaccine antigens. Methods Mol. Biol. 267: 365 -383.
Pubmed

 
 

Kushnir N, Streatfield JS, Yusibov V(2012). Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31:58-83.
Crossref

 
 

Lamb JR, Woody JN, Hartzman RJ, Eckels DD (1982). In vitro influenza virus-specific antibody production in man: antigen-specific and HLA-restricted induction of helper activity mediated by cloned human T lymphocytes. J. Immunol. 129:1465-1470.
Pubmed

 
 

Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, et al.(2010). Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5:e15559.
Crossref

 
 

Lanthier PA Huston GE, Mojuin A, Eaton SM, Szaba FM, Kummer LW, Tighe MP, Kohlmeier JE, Blair PJ, Broderick M, Smiley ST, Haynes L(2011). Live attenuated influenza vaccine(LAIV) impacts innate and adaptive immune responses. Vaccine 29:7849-7856.
Crossref

 
 

Latham T, Galarza JM (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol. 75:6154-6165.
Crossref

 
 

Laver WG, Colman PM, Webster RG, et al.(1984). Influenza virus neuraminidase with hemagglutinin activity. Virology 137:314-323.
Crossref

 
 

Layton SL, Kapczynski DR, Higgins S, Wolfenden AD, Liljebjelke KA, Bottje WG, Swayne D, Berghman LR, Kwon YM, Hargis BM, Coleg K(2009). Vaccination of chickens with recombinant salmonella expressing M2e and cD154 epitopes increases protection and decreases viral shading after low pathogenic avian influenza challenge. Poult. Sci. 88:2244-2252.
Crossref

 
 

Lee WC, Saurez LD(2008). Reverse genetics of the avian influenza virus: avian influenza virus. In: Spackman, E. ( Ed) Humana Press, NJ. pp. 99-111.
Crossref

 
 

Lei H, Sheng Z, Ding Q, Chen J, Wei X, Lam M-K, Xu Y (2012). Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera Toxin Subunit B. Clin. Vaccine Immunol. 18(7):1046.
Crossref

 
 

Lei H, Xu Y, Chen J, Wei X, Lam DM (2010). Immunoprotection against Influenza H5N1 virus by oral administration of enteric-coated recombinant Lactococcus lactis mini-capsules. Virology 407:319- 324.
Crossref

 
 

Leong KH, Ramsay AJ, Boyle DB, Ramshaw IA (1994). Selective induction of immune responses by cytokines co-expressed in recombinant fowlpox virus. J. Virol. 68(12):8125-8130.
Pubmed

 
 

Levine MM, Sztein BM(2004). Vaccine development strategies for improving immunization: the role of modern immunology. Nat. Immunol. 5(5):460-464.
Crossref

 
   

Liljebjelke KA, Petkov DI, Kapczynski DR (2010). Mucosal vaccination with a codon-optimized hemagglutinin gene expressed by attenuated salmonella elicits a protective immune response in chickens against highly pathogenic avian influenza. Vaccine 28:4430-4437.
Crossref

 

Liu J, Hou X, Wei C, Yu L, He X, Wang G, Lee J, Kim C (2009). Induction of immune responses in mice after oral immunization with recombinant Lactobacillus casei strains expressing enterotoxigenic Escherichia coli F41 fimbrial protein. Appl. Environ. Microbiol. 75:4491-4497.
Crossref

 
 

Liu Q, Mena I, Ma J, Bawa B, Krammer F, Lyoo YS, Lang Y, Morozov I, Mahardika GN, Ma W, Garcia-Sastre A, Richt JA(2015). Newcastle disease virus-vectored H7 and H5 live vaccines protect chickens from challenge with H7N9 or H5N1 avian influenza viruses. J. Virol. 89(14):7401-7408.
Crossref

 
 

Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen YH (2004). High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine 23:366-371.
Crossref

 
 

Lo'pez-Macias C(2012). Virus-like particle(VLP)-based vaccines for pandemic influenza. Hum. Vaccin. Immunother. 8(3):411-414.

 
 

López-Macías C, Ferat-Osorio E, Tenorio-Calvo A, Isibasi A, Talavera J, Arteaga-Ruiz O, et al.(2011). Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine in a blinded, randomized, placebo-controlled trial of adults in Mexico. Vaccine 29:7826-7834.
Crossref

 
 

Ludwig C, Wagner R(2007). Virus-like particles - universal molecular toolboxes. Curr. Opin. Biotechnol. 18:537-545.
Crossref

 
 

Maciag PC, Radulovic S, Rothman J (2009). The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27:3975-3983.
Crossref

 
 

Madhan S, Prabakaran M, Kwang J(2010). Baculovirus as vaccine vectors. Curr. Gene Ther. 10:201-213.
Crossref

 
 

Mahmood K, Bright AR, Mytle N, Carter MD, Crevar JC, Achenbach EJ, Heaton MP, Tumpey MT, Ross MT(2008). H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine 26:5393-5399.
Crossref

 
 

Marangon S, Cecchinato M, Capua I(2008). Use of vaccination in avian influenza control and eradication. Zoonoses Public Health 55:65-67.
Crossref

 
 

Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonosoff GP, Ravin NV (2015). Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain M2 protein linked flagellin in plants using viral vectors. BMC Biotechnology 15:42.
Crossref

 
 

Marillant S, Giritech A, Gils M, et al.(2004). In planta engineering of viral RNA replicons: effiicient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sc. USA 101(8):6852- 6857.
Crossref

 
 

Maines RT, Szretter JK, Perrone L, Belses AJ, Bright AR, Zeng H, Tumpey MT, Katz MT(2008). Pathogenesis of emerging avian influenza viruses in mammals and the innate immune response. Immunol. Rev. 225:68-84.
Crossref

 
 

Mebatsion T, Koolen MJ, de Vaan, LT, de Haas N, Braber M, Romer-Oberdorfer A, et al.,(2002). Newcastle disease virus (NDV) marker vaccine: an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J. Virol. 76:10138-10146.
Crossref

 
 

Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A, Ugulava N, et al. (2008). A Plant produced influenza subunit vaccine protects ferrets against virus challenge. Influenza Other Respi Viruses 2:33-40.
Crossref

 
 

Mingxiao M, Ningyi J, Zhenguo W, Ruilin W, Dongliang F, Min Z, Gefen Y, Chang L, et al. (2006). Construction and immunogenicity of recombinant fowlpox vaccines co-expressing HA of AIV H5N1 and chicken IL18. Vaccine 24:4304-4311.
Crossref

 
 

Morein B, Sharp M, Sundquist B, Simonns K(1983). Protein subunit vaccines of parainfluenza type 3 virus: immunogenic effect in lambs and mice. J. Gen. Virol. 1557-1569.
Crossref

 
 

Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson A-L, Hitzeroth II, Rybicki EP(2012). Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnology 12:14.
Crossref

 
 

Musiychuk K, Stephenson N, Bi H, et al. (2007). A launch vector for the production of vaccine antigens in plants. Influenza Other Respi. Viruses 1: 19-25.
Crossref

 
 

Nakaya T, Cros J, Park MS, Nakaya Y, Zheng H, Sagrera A, Villar E, Garcia-Sastre A, Palese P(2001). Recombinant newcastle disease virus as a vaccine vector. J. Virol. 75:11868-11873.
Crossref

 
 

Nayak B, Rout SM, Kumar S, Khlil MS, Fouda, et al., (2009). Immunization of chickens with newcastle disease virus expressing H5 hemagglutinin protects against highly pathogenic H5N1 avian influenza viruses. PLoS One 4(8): e6509.
Crossref

 
 

Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W(1999). A Universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5:1157-1163.
Crossref

 
 

Okuno Y, Isegawa Y, Sasao F, Ueda S(1993). A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67:2552-2558.
Pubmed

 
 

Park HJ, Ferko B, Byun YH, Song JH, Han GY, et al. (2012). Sublingual immunization with a live attenuated influenza A virus lacking the nonstructural protein 1 induces broad protective immunity in mice. PLoS One 7(6):e39921.
Crossref

 
 

Park MS, Steel J, Garcia-Sastre A, Swayne D, Palese P (2006). Engineered viral vaccine constructs with dual specificity: avian influenza and newcastle disease. Proc. Natl. Acad. Sci. USA 103:8203-8208.
Crossref

 
 

Patel A, Tikoo S, Kobinger G(2010). A porcine adenovirus with low human seroprevalence is a promising alternative vaccine vector to human adenovirus 5 in an H5N1 virus disease model. PLoS One 5:e15301.
Crossref

 
 

Peeters B, de Boer SM, Tjeerdsma G, Moormann R, Koch G (2012). New DIVA vaccine for the protection of poultry against H5 highly pathogenic avian influenza viruses irrespective of the N-subtype. Vaccine 30:7078-7083.
Crossref

 
 

Peeters BP, de Leeuw OS, Koch G, Gielkens AL (1999). Rescue of newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 73(6)):5001-5009.

 
 

Pellissery JA, Nair RU (2013). Lactic acid bacteria as mucosal delivery vaccine. Adv. Anim. Vet. Sci. 1(6):183-187.

 
 

Perkus ME, Piccini A, Lipinskas BR, Paoletti E (1985). Recombinant vaccinia virus: immunization against multiple pathogens. Science (4717):981 - 984.
Crossref

 
 

Petros RA, DeSimone JM (2010). Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:615-627.
Crossref

 
 

Plummer ME, Manchester M (2011). Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(2):174-196.
Crossref

 
 

Price EG, Lo YC, Misplon AJ, Epstein SL (2014). Mucosal immunization with a candidate universal influenza reduces virus transmission in a mouse model. J. Virol. 88(15):
Crossref

 
 

Pushko P, Tumpey TM, Bu F, Knell J, Robinson R, Smith G(2005). Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 23:5751-5759.
Crossref

 
 

Pushko P, Tumpey TM, van Hoeven N, Belser JA, Robinson R, Nathan M, et al. (2007). Evaluation of influenza virus-like particles and novasome adjuvant as candidate vaccine for avian influenza. Vaccine 25:4283-4290.
Crossref

 
 

Qian C, Chen S, Ding P, Chai M, Xu C, Gan J, Peng D, Liu X (2012). The immune response of a recombinant fowlpox virus co expressing the HA Gene of the H5N1 highly pathogenic avian influenza virus and chicken interleukin 6 gene in ducks. Vaccine 30:6279-6286.
Crossref

 
 

Ramp K, Skiba M, Karger A, Mettenleiter TC, Rӧmer - Oberdӧrfer A (2011). Influence of insertion site of the avian influenza virus haemagglutinin(HA) gene within the newcastle disease virus genome on ha expression. J. Gen. Virol. 92:355 -360.
Crossref

 
 

Rao SS, Styles D, Kong W, Andrews C, Gorres JP, Nobel GJ (2009). A gene-based avian influenza vaccine in poultry. Poult. Sci. 88:860- 866.
Crossref

 
 

Robert-Guroff M(2007). Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 18:546-556.
Crossref

 
 

Robertson JS(1993). Clinical influenza virus and the embryonated hen's egg. Rev. Med. Virol. 3:97-106.
Crossref

 
 

Roy S, Kobinger GP, Lin J, Figueredo J, Calcedo R, Kobasa D, Wilson JM (2007). Partial protection against h5n1 influenza in mice with a single dose of a chimpanze adenovirus vector expressing nucleoprotein. Vaccine 6845:6851.

 
 

Russell WC (2009). Adenoviruses: Update on structure and functions. J. Gen. Virol. 90: 1- 20.
Crossref

 
 

Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO(1998). Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281:565 - 568.
Crossref

 
 

Rybicki EP (2014). Plant-based vaccins against viruses. Virol. J. 11: 205. Rӧmer-Oberdӧrfer A, Mundt E, Mebatsion T, Buchholz JU (1999). Generation of recombinant lentogenic newcastle disease virus from cDNA. J. Gen. Virol. 80:2987-2995.

 
 

Saint-Jore-Dupas C, Faye L, Gomord V (2007). From planta to pharma with glycosylation in the toolbox. Trends Biotechnol. 25:317-323.
Crossref

 
 

Saroja CH, Lakshmi PK, Bhaskaran S (2011). Recent trends in vaccine delivery systems: a review. Int. J. Pharm. Investig.1:64-74.
Crossref

 
 

Saxena M, Van TTH, Baird FJ, Coloe PJ, Smoker PM (2013). Pre-existing Immunity against Vaccine Vectors - Friend or Foe? Microbiology 159:1-11.
Crossref

 
 

Schröer D, Veits J, Grund C, Dauber M, Keil G, Granzow H, Mettenleiter TC, Römer-Oberdörfer A(2009). Vaccination with newcastle disease virus vectored vaccine protects chickens against highly pathogenic H7 avian influenza virus. Avian Dis. 53:190-197.
Crossref

 
 

Schwartz JA, Buonocore L, Roberts A, Suguitan A, Kobasa D, Kobinger G, Feldmann H, Subbarao K, Rose JK(2007). Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross- neutralizing antibodies and long-term protection. Virology 366:166 -173.
Crossref

 
 

Seveno M, Bardor M, Paccalet T, Gomord V, Lerouge P, Faye L (2004). Glycoprotein sialylation in plants? Nat. Biotechnol. 22:1351-1352.
Crossref

 
 

Seregin SS, Amalfitano A(2009). Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin. Biol. Ther. 9:1521-1531.
Crossref

 
 

Shaw A(2012). New technologies for new influenza vaccines. Vaccine 30:4927-4933.
Crossref

 
 

Shen H, Slifka MK, Matloubian M, Jensen ER, Ahmed R, Miller JF(1995). Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA 92:3987- 3991.
Crossref

 
 

Shoji Y, Farrance CE, Bi H, Shamloul M, Green B, Manceva S, et al. (2009). Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 and A ⁄ Anhui ⁄ 1 ⁄ 05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants. Vaccine 27:3467-3470.
Crossref

 
 

Singh N, Pandey A, Jayashankar L, Mittal SK(2008). Bovine adenoviral vector based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol. Ther. 16:965-971.
Crossref

 
 

Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG (2005). Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev. Vaccines 4(1):63-76.
Crossref

 
 

Solorzano A, Ye J, Perez DR (2010). Alternative live-attenuated influenza vaccines based on modification in the polymerase genes protect against epidemic and pandemic flu. J. Virol. 84(9):4587 - 4596.
Crossref

 
 

Song JM, Wang BZ, Park KM, van Rooijen N, Quan FS, Kim MC, et al.; (2011). Influenza virus-like particles containing M2 induce broadly cross protective immunity. PLoS One 6:e14538.
Crossref

 
 

Song L, Nakaar V, Kavita U, et al. (2008). Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. Plos One 3(5):e2257.
Crossref

 
 

Srivastava IK, Liu MA(2003). Gene vaccines. Ann. Intern. Med. 138:550 - 559.
Crossref

 
 

Stanekova Z, Vareckova E(2010). Conserved epitopes of influenza A virus inducing protective immunity and their prospects for universal vaccine development. Virol. J. 7:351.
Crossref

 
 

Steel J(2011). New strategies for the development of H5N1, subtype influenza vaccines. Biodrugs 25(5): 285 - 298.
Crossref

 
 

Stephenson I, Hayden F, Osterhaus A, Howard W, Pervikov Y, Palkonyay L, Kieny MP(2010). report of the fourth meeting on influenza vaccines that induce broadspectrum and long-lasting immune responses: World Health Organization and Wellcome Trust, London, United Kingdom, 9-10 November 2009. Vaccine 28:3875 - 3882.
Crossref

 
 

Stephenson I, Nicholson KG, Wood JM, Zambon MC, Katz JM (2004). Confronting the avian influenza threat: vaccine development for a potential pandemic threat. Lancet Infect. Dis. 4(8):499-509.
Crossref

 
 

Streatfield SJ(2006). Engineered Chloroplasts as Vaccine Factories to Combat Bioterrorism. Trends Biotechnol. 24(8):339-342.
Crossref

 
 

Subbarao K, Joseph T (2007). Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 7:267-278.
Crossref

 
 

Subbarao K, Matsuoka Y (2013). The prospects and challenges of universal vaccines for influenza. Trends Microbiol. 21(7):350-358.
Crossref

 
 

Suguitan AL Jr., McAuliffe J, Mills KL, Jin H, Duke G, et al. (2006). live attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med. 3(9):e360.
Crossref

 
   

 

Swayne DE(2006). Principles of Vaccine Protection in Chickens and Domestic Waterfowl against Avian Influenza Emphasis on Asian H5N1 Highly Pathogenic Avian Influenza. Ann. N.Y. Acad. Sci. 1081:174-181.
Crossref

 

Swayne DE (2009). Avian influenza vaccines and therapies for poultry. Comp. Immun. Microbiol. Infect. Dis. 32:351-363.
Crossref

 
 

Snyder MH, Betts RF, DeBorde D, Tierney EL, Clements ML, Herrington D, Sears SD, Dolin R, Maassab HF, Murphy B (1988). Four viral genes independently contribute to attenuation of live influenza A/Ann Arbor/6/60(H2N2) cold-adapted reassortant virus vaccine. J. Virol. 62(2):488-495.
Pubmed

 
 

Szurgot I, Szolajska E, Laurin D, Lambrecht B, Chaperot L, Schoehn G, Chroboczek J(2013). Self-adjuvanting candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform. Vaccine 31:4338-4346.
Crossref

 
 

Taylor DN, Treanor JJ, Strout C, Johnson C, Fitzgerald T, Kavita U, et al. (2011). Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29(31):4897-902.
Crossref

 
 

Thomas PG, Keating R, Hulse-Post DJ, Doherty PC (2006). Cell-mediated protection in influenza infection. Emerg. Infect. Dis. 12(1):48-54.
Crossref

 
 

Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox, F, van Deventer E, Guan Y, Cinatl J, ter Muelen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008). Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3:e3942.
Crossref

 
 

Tian G, Zhang S, Li Y, Bu Z, Liu P, Zhou J, Li C, Shi J, Yu K, Chen H(2005). Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 341:153-162.
Crossref

 
 

Tiwari S, Verma PC, Sing PK, Tuli R (2009). Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 27:449-467.
Crossref

 
 

Toussi DN, Massari P (2014). Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines 2(2):323-353.
Crossref

 
 

Treanor JJ, Campbell JD, Zangwill KM, Rowe T, Wolf M (2006). Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. New Engl. J. Med. 354(13):1343-1251.
Crossref

 
 

Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, Fitzgerald T, et al. (2010). Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine (52):8268-8274.
Crossref

 
 

Tutykhina IL, Logunov DY, Shcherbinin DN, Shmarov MM, Tukhvatulin AI, Naroditsky BS, Gintsburg AL(2011). Development of adenoviral vector-based mucosal vaccine against influenza. J. Mol. Med. (Berl). 89: 331-341
Crossref

 
 

Twyman RM, Schillberg S, Fischer R(2005). Transgenic plants in the biopharmaceutical market. Expert Opin. Emerg. Drugs 10(1):185-218.
Crossref

 
 

Ulmer JB (2002). Influenza DNA vaccines. Vaccine 20:574-576.
Crossref

 
 

van den Berg T, Lambrecht B, Marche S, Steensels M, van Borm S, Bublot M(2008). Influenza vaccines and vaccination strategies in birds. Comp. Immunol. Microbiol. Infect. Dis. 31(2-3):121-65.
Crossref

 
 

van Der Goot JA, Koch G, De Jong MC, van Boven M(2005). Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proc. Natl. Acad. Sci. USA 102:18141-18146.
Crossref

 
 

van Oers MM(2006). Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv. Virus Res. 68:193-253.
Crossref

 
 

Varecková E, Mucha V, Kostolanský F, Gubareva LV, Klimov A (2008). HA2-specific monoclonal antibodies as tools for differential recognition of influenza a virus antigenic subtypes. Virus Res. 132:181-186.
Crossref

 
 

Veits J, Wiesner D, Fuchs W, Hoffmann B, Granzow H, et al. (2006). Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against newcastle disease and avian influenza. Proc. Natl. Acad. Sci. USA 103:8197-8202.
Crossref

 
 

Vemula SV, Ahi YS, Swaim A-M, Katz JM, Donis R, et al. (2013) Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS ONE 8(4):e62496.
Crossref

 
 

Wang TT, Tan GS, Hai R., Pica N, Petersen E, Moran TM, Palese P(2010). Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 6:e1000796.
Crossref

 
 

Wang Z, Yu Q, Gao J, Yang Q (2012). Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. Expressing the hemagglutinins of the avian influenza virus H5N1. Clin. Vaccine Immunol. 19(2):174.
Crossref

 
 

Wei CJ, Xu L, Kong WP, Shi W, Canis K, Stevens J, Yang ZY, Dell A, Haslam SM, Wilson IA, Nabel GJ (2008). Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J. Virol. 82:6200-6208.
Crossref

 
 

Wells JM, Mercenier A(2008). Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6(5):349-362.
Crossref

 
 

Welsh JP, Lu Y, He XS, Greenberg HB, Swartz JR(2012). Cell-free production of trimeric influenza hemagglutinin head domain proteins as vaccine antigens. Biotechnol. Bioeng. 109(12):2962-2969.
Crossref

 
 

WHO (2005). Weekly Epidemiological Record, No.33. World Health Organization guidelines on the use of vaccines and antivirals during influenza pandemics Geneva. http://www.who.int/csr/resources/publications/influenza.

 
 

WHO (2006). Influenza vaccine production technologies. World Health Organization, Geneva, Switzerland. http://www.who.int/csr/resources/publications/influenza/CDS EPR GIP 2006/pdf.

 
 

Williams JA, Carnes AE, Hodgson CP (2009). Plasmid DNA vaccine vector design: impact on efficacy, safety, and upstream production. Biotechnol. Adv. 27:353-370.
Crossref

 
 

Wood JS, Robertson JS (2007). Reference viruses for seasonal and pandemic influenza vaccine preparation. Influenza Other Respi. Viruses 1:5- 9.
Crossref

 
 

World Health Organization (WHO) (2013). Weekly Epidemiological Record No.28, 89, 309:320. http://www.who.int/wer.

 
 

World Health Organization (WHO) (2014). Weekly Epidemiological Record No.28, 89, 309:320. http://www.who.int/wer.

 
 

World Organization for Animal Health (OIE) (2009). Update on highly pathogenic avian influenza in animals (Type H5 and H7). OIE-World Organization for Animal Health, Paris, France.

 
 

World Organization for Animal Health (OIE) (2015). Update on highly pathogenic avian influenza in animals (Type H5 and H7). http://www.oie.int/animal-health-in-the-world/update-on-avian-influenza/2015.

 
 

Wressnigg N, Voss D, Wolff T, Romanova J et al.(2009). Development of a live-attenuated influenza ∆NS1 intranasal vaccine candidate. Vaccine 27:2851-2857.
Crossref

 
 

Wu Q, Fang L, Wu X, et al. (2009). A Pseudotype baculovirus-mediated vaccine confers protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens. Mol. Immunol. 46: 2210 - 7.
Crossref

 
 

Wu R, Guan Y, Yang Z, Chen J, Wang H, Chen Q, Sui Z, Fang F, Chen Z (2010). A live bivalent influenza vaccine based on a H9N2 virus strain. Vaccine 28:673- 680.
Crossref

 
 

Yin Y, Tian D, Jiao H, Zhang C, Pan Z, Zhang X, Wang X, Jiao X(2011). Pathogenicity and immunogenicity of a mutant strain of listeria monocytogenes in the chicken infection model. Clin. Vaccine Immunol. 18:500-505.
Crossref

 
 

Yusibov V, Rabindran S (2008). Recent progress in the development of plant derived vaccines. Expert Rev. Vaccines 7:1173-1183.
Crossref

 
 

Zhang H, Wang L, Compans WR, Wang Z-B(2014). Universal influenza vaccines, a dream to be realized soon. Viruses 6:1974-1991.
Crossref

 
 

Zhang J (2012). Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines. Viruses 4:2711- 2735.
Crossref

 
 

Zhang X, Wanda SY, Brenneman K, Kong W, Zhang X, Roland K, Curtiss III R(2011). Improving salmonella vector with rec mutation to stabilize the DNA cargoes. BMC Microbiology 11:31.
Crossref

 
 

Zhao W, Zhang Z, Zsak L, Yu Q (2015). P and M gene junction is the optimal insertion site in newcastle disease virus vaccine vector for foreign gene expression. J. Gen. Virol. 96:40-45.
Crossref

 
 

Zhao X, Li Z, Gu B, Frankel RF (2005). Pathogenicity and immunogenicity of a vaccine strain of listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect. Immun. 73(9):5784-5798.
Crossref

 
 

Zhu J, Grace M, Casale J, Chang AT, Musco ML, Bordens R, Greenberg R, Schaefer E, Indelicato SR (1999). Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector. Hum. Gene Ther. 10:113-121.
Crossref

 

 


APA Yakubu, B., Nok, A. J., Owolodun O. A., Luka P. D., & Ali, U. D. (2015). The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. Biotechnology and Molecular Biology Reviews, 10(3), 19-38.
Chicago Bitrus Yakubu, Andrew J. Nok, Owolodun O. A., Luka P. D. and Umaru Dunkura Ali. "The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa." Biotechnology and Molecular Biology Reviews 10, no. 3 (2015): 19-38.
MLA Bitrus Yakubu, et al. "The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa." Biotechnology and Molecular Biology Reviews 10.3 (2015): 19-38.
   
DOI 10.5897/BMBR2015.0246
URL http://academicjournals.org/journal/BMBR/article-abstract/9AA790354184

Subscription Form