Biotechnology and Molecular Biology Reviews
Subscribe to BMBR
Full Name*
Email Address*

Article Number - F5B457640317


Vol.8(2), pp. 18-34 , October 2013
DOI: 10.5897/BMBR07.003
ISSN: 1538-2273



Review

Genomic imprinting: A general overview


Muniswamy K.1* and Thamodaran P.2




1Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar- 243 122, India.

2Division of Veterinary Microbiology, TANUVAS, Chennai-600 007, India.


Email: swamycsh@gmail.com






 Accepted: 27 August 2013  Published: 31 October 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Usually, most of the genes are biallelically expressed but imprinted gene exhibit monoallelic expression based on their parental origin. Genomic imprinting exhibit differences in control between flowering plants and mammals, for instance, imprinted gene are specifically activated by demethylation, rather than targeted for silencing in plants and imprinted gene expression in plant which occur in endosperm. It also displays sexual dimorphism like differential timing in imprint establishment and RNA based silencing mechanism in paternally repressed imprinted gene. Within imprinted regions, the unusual occurrence and distribution of various types of repetitive elements may act as genomic imprinting signatures. Imprinting regulation probably at many loci involves insulator protein dependent and higher-order chromatin interaction, and/or non-coding RNAs mediated mechanisms. However, placenta-specific imprinting involves repressive histone modifications and non-coding RNAs. The higher-order chromatin interaction involves differentially methylated domains (DMDs) exhibiting sex-specific methylation that act as scaffold for imprinting, regulate allelic-specific imprinted gene expression. The paternally methylated differentially methylated regions (DMRs) contain less CpGs than the maternally methylated DMRs. The non-coding RNAs mediated mechanisms include C/D RNA and microRNA, which are invovled in RNA-guided post-transcriptional RNA modifications and RNA-mediated gene silencing, respectively. The maintenance and reprogramming of imprinting are not significantly affected by reduced expression of Dicer1 and the evolution of imprinting might be related to acquisition of DNMT3L (de novo methyltransferase 3L) by a common ancestor of eutherians and marsupials. The common feature among diverse imprinting control elements and evolutionary significance of imprinting need to be identified.

 

Key words: Genomic imprinting, differentially methylated regions (DMRs), non-coding RNA, imprinting evolution.

Allen E, Horvath S, Tong F, Kraft P, Spiteri E, et al. (2003). High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc. Natl. Acad Sci. USA 100: 9940-9945.
http://dx.doi.org/10.1073/pnas.1737401100
PMid:12909712 PMCid:PMC187893
 
Aukerman MJ, Sakai H (2003). Regulation of flowering time and floral organ identity by a Micro RNA and its APETALA2-like target genes. Plant Cell 15: 2730-2741.
http://dx.doi.org/10.1105/tpc.016238
PMid:14555699 PMCid:PMC280575
 
Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000). Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97: 6634-6639.
http://dx.doi.org/10.1073/pnas.97.12.6634
PMid:10841562 PMCid:PMC18684
 
Bao N, Lye KW, Barton MK (2004). Micro RNA binding sites in Arabidopsis class III HD-ZIP mRNA are required for methylation of the template chromosome. Dev. Cell 7: 653-662.
http://dx.doi.org/10.1016/j.devcel.2004.10.003
PMid:15525527
 
Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991).The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349: 84-87.
http://dx.doi.org/10.1038/349084a0
PMid:1845916
 
Beechey CV, Cattanach BM, Blake A, Peters J (2005). Mouse imprinting data and references. http://www.mgu.har.mrc.ac.uk/research/imprinting/ .
 
Bell AC, Felsenfeld G (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405: 482-485.
http://dx.doi.org/10.1038/35013100
PMid:10839546
 
Bestor TH (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9: 2395-2402.
http://dx.doi.org/10.1093/hmg/9.16.2395
PMid:11005794
 
Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294: 2536-2539.
http://dx.doi.org/10.1126/science.1065848
PMid:11719692
 
Brown SW, Chandra HS (1977). Chromosome imprinting and the differential regulation of homologous chromosomes. In: Goldstein, L., Prescott, D.M.'s Cell Biology: A Comprehensive Treatise, Vol. I. Academic Press, New York.
 
Caspary T, Cleary MA, Baker CC, Guan XJ, Tilghman SM (1998). Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell Biol. 18: 3466-3477.
PMid:9584186 PMCid:PMC108927
 
Chan SW, Henderson IR, Jacobsen SE (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6: 351-360.
http://dx.doi.org/10.1101/gr.3243305
http://dx.doi.org/10.1016/j.ygeno.2005.08.012
PMid:16269234
 
Cobb BS, Nesterova TB, Thompson E, Hertweck A, O'Connor E, Godwin J et al., (2005). T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201: 1367-1373.
http://dx.doi.org/10.1084/jem.20050572
PMid:15867090 PMCid:PMC2213187
 
Crouse HV (1960). The controlling element in the sex chromosome behaviour in Sciara. Genetics 45: 1429-1443.
PMid:17248010 PMCid:PMC1210016
 
Crow FC (2000). The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1: 40-47.
http://dx.doi.org/10.1038/35036060
http://dx.doi.org/10.1038/35049558
PMid:11262873
 
Czermin B, Schotta G, Hulsmann BB, Brehm A, Becker PB, Reuter G, Imhof A (2001). Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep. 2: 915-919.
http://dx.doi.org/10.1093/embo-reports/kve210
PMid:11571273 PMCid:PMC1084088
 
Davis TL, Trasler JM, Moss SB, Yang GJ, Bartolomei MS (1999). Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58: 18-28.
http://dx.doi.org/10.1006/geno.1999.5813
PMid:10331941
 
DeChiara TM, Robertson EJ, Efstratiadis A (1991). Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64: 849-859.
http://dx.doi.org/10.1016/0092-8674(91)90513-X
 
Doench JG, Sharp PA (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18: 504-511.
http://dx.doi.org/10.1101/gad.1184404
PMid:15014042 PMCid:PMC374233
 
Ferguson-Smith AC, Surani MA (2001). Imprinting and the epigenetic asymmetry between parental genomes. Science 293: 1086-1089.
http://dx.doi.org/10.1126/science.1064020
PMid:11498578
 
Fitzpatrick GV, Soloway PD, Higgins MJ (2002). Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32: 426-431.
http://dx.doi.org/10.1038/ng988
PMid:12410230
 
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6: 784-791.
http://dx.doi.org/10.1038/ncb1155
PMid:15247924
 
Fukasawa M, Mortia S, Kimura M, Horii T, Ochiya T, Hatada I (2006). Genomic imprinting in Dicer 1-hypomorphic mice. Cytogenet. Genome Res. 113: 138-143.
http://dx.doi.org/10.1159/000090825
PMid:16575173
 
Gehring M, Choi Y, Fischer RL (2004). Imprinting and seed development. Plant Cell 16: S203-S213.
http://dx.doi.org/10.1105/tpc.017988
PMid:15010515 PMCid:PMC2643396
 
Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA, (2002). Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297: 1871-1873.
http://dx.doi.org/10.1126/science.1074950
PMid:12077425
 
Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, Higgs DR (2000). Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat. Genet. 24: 368-371.
http://dx.doi.org/10.1038/74191
PMid:10742099
 
Goll MG, TH Bestor (2002). Histone modification and replacement in chromatin activation. Genes Dev. 16: 1739-1742.
http://dx.doi.org/10.1101/gad.1013902
PMid:12130533
 
Greally JM (2002). Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc. Natl. Acad. Sci USA 99: 327-332.
http://dx.doi.org/10.1073/pnas.012539199
PMid:11756672 PMCid:PMC117560
 
Grewal SI, Moazed D (2003). Heterochromatin and epigenetic control of gene expression. Science 301: 798-802.
http://dx.doi.org/10.1126/science.1086887
PMid:12907790
 
Haig D (2006). Intragenomic politics. Cytogenet. Genome Res. 113: 68-74.
http://dx.doi.org/10.1159/000090816
PMid:16575164
 
Haig D, Graham C (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64: 1045-1046.
http://dx.doi.org/10.1016/0092-8674(91)90256-X
 
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002). Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117: 15-23.
http://dx.doi.org/10.1016/S0925-4773(02)00181-8
 
Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002). Establishment and maintenance of a heterochromatin domain. Science 297: 2232-2237.
http://dx.doi.org/10.1126/science.1076466
PMid:12215653
 
Hamilton AJ, Baulcombe DC, (1999). A species of small antisense RNA in posttranscritpional gene sillencing in plants. Science 286: 950-952.
http://dx.doi.org/10.1126/science.286.5441.950
PMid:10542148
 
Hannon GJ (2002). RNA interference. Nature 418: 244-251.
http://dx.doi.org/10.1038/418244a
PMid:12110901
 
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000). CTCF mediates methylation sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486-489.
http://dx.doi.org/10.1038/35013106
PMid:10839547
 
Hata K, Okano M, Lei H, Li E (2002). Dnmt3L cooperates within the Dnmt3 family of de novo DNA methyl-transferases to establish maternal imprints in mice. Development 129: 1983-1993.
PMid:11934864
 
Hatada I, Nabetani A, Arai Y, Ohishi S, Suzuki M, Miyabara S, Nishimune Y, Mukai T (1997). Aberrant methylation of an imprinted gene U2af1-rs1(SP2) caused by its own transgene. J. Biol. Chem. 272: 9120-9122.
http://dx.doi.org/10.1074/jbc.272.14.9120
PMid:9083040
 
Heard E (2004). Recent advances in X-chromosome inactivation. Curr. Opin. Cell. Biol. 16: 247-255.
http://dx.doi.org/10.1016/j.ceb.2004.03.005
PMid:15145348
 
Hellmann-Blumberg U, Hintz MF, Gatewood JM, Schmid CW (1993). Developmental differences in methylation of human Alu repeats. Mol. Cell Biol. 13: 4523-4530.
PMid:8336699 PMCid:PMC360066
 
Holliday R, Grigg GW (1993). DNA methylation and mutation. Mutat Res. 285: 61-67.
http://dx.doi.org/10.1016/0027-5107(93)90052-H
 
Howlett SK, Reik W (1991). Methylation levels of maternal and paternal genomes during preimplantration development. Development 113: 119-127.
PMid:1764989
 
Hu JF, Orugantu H, Vu TH, Hoffman AR (1998). Tissue-specific imprinting of the mouse insulin-like growth factor II receptor gene correlates with differential allele-specific DNA methylation. Mol. Endocrinol. 12: 220-232.
http://dx.doi.org/10.1210/mend.12.2.0062
http://dx.doi.org/10.1210/me.12.2.220
PMid:9482664
 
Hurst LD, Mc Vean GT (1997). Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet. 13: 436-433.
http://dx.doi.org/10.1016/S0168-9525(97)01273-0
 
Iwasa Y (1998). The conflict theory of genomic imprinting: how much can be explained? Curr. Top. Dev. Biol. 40: 255-293.
http://dx.doi.org/10.1016/S0070-2153(08)60369-5
 
Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416: 556-560.
http://dx.doi.org/10.1038/nature731
PMid:11898023
 
Jeddeloh JA, Stokes TL, Richards EJ (1999). Maintenance of genomic methylation requires a SW12/SNF2-like protein. Nat Genet. 22: 94-97.
http://dx.doi.org/10.1038/8803
PMid:10319870
 
Jenuwein T, Allis CD (2001). Translating the histone code. Science 293: 1074-1080.
http://dx.doi.org/10.1126/science.1063127
PMid:11498575
 
Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6: 705-714.
http://dx.doi.org/10.1101/gad.6.5.705
PMid:1577268
 
Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429: 900-903.
http://dx.doi.org/10.1038/nature02633
PMid:15215868
 
Kaneko-Ishino T, Kohda T, Ishino F (2003). The regulation and biological signifciance of genomic imprinting in mammals. J. Biochem. (Tokyo) 133: 699-711.
http://dx.doi.org/10.1093/jb/mvg090
PMid:12869525
 
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19: 489-501.
http://dx.doi.org/10.1101/gad.1248505
PMid:15713842 PMCid:PMC548949
 
Kantor B, Makedonski K, Green-Finberg Y, Shemer R, Razin A, (2004). Control elements within the PWS/AS imprinting box and their function in the imprinting processes. Hum Mol. Genet. 13: 751-762.
http://dx.doi.org/10.1093/hmg/ddh085
PMid:14962980
 
Kawasaki H, Taira K (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431: 211-217.
http://dx.doi.org/10.1038/nature03002
http://dx.doi.org/10.1038/nature02889
PMid:15311210
 
Ke X, Thomas NS, Robinson DO, Collins A (2002). The distinguishing sequence characteristics of mouse imprinted genes. Mamm. Genome 13: 639-645.
http://dx.doi.org/10.1007/s00335-002-3038-x
PMid:12461650
 
Kierszenbaum AL (2002). Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths. Mol. Reprod. Dev. 63: 269-272.
http://dx.doi.org/10.1002/mrd.90011
PMid:12237941
 
Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK, MacDonald RG, Jirtle RL (2000). M6P/IGF2R imprinting evolution in mammals. Mol. Cell. 5: 707-716.
http://dx.doi.org/10.1016/S1097-2765(00)80249-X
 
Kim VN (2005). MicroRNA biogenesis : coordinated cropping and dicing. Nat Rev. Mol. Cell Biol. 6: 376-385.
http://dx.doi.org/10.1038/nrm1644
PMid:15852042
 
Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T, Sasaki H (2006). Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet. Genome Res. 113: 130-137.
http://dx.doi.org/10.1159/000090824
PMid:16575172
 
Kono T (2006). Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet. Genome Res. 113: 31-35.
http://dx.doi.org/10.1159/000090812
PMid:16575160
 
Kosak ST Groudine M (2004). Form follows function. The genomic organization of cellular differentiation. Genes Dev. 18: 1371-1384.
http://dx.doi.org/10.1101/gad.1209304
PMid:15198979
 
Labrador M, Corces VG (2002). Setting the boundaries of chromatin domains and nuclear organization. Cell 111: 151-154.
http://dx.doi.org/10.1016/S0092-8674(02)01004-8
 
Lane N, Dean W, Erhardt S, Hajkova P, Surani A et al. (2003). Resistance of IAPs to methylation reprograming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35: 88-93.
http://dx.doi.org/10.1002/gene.10168
PMid:12533790
 
Le Cellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308: 557-560.
http://dx.doi.org/10.1126/science.1108784
PMid:15845854
 
Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T, Ogura A, Ishino F (2002). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129: 1807-1817.
PMid:11934847
 
Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003). Suv39h mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13: 1192-1200.
http://dx.doi.org/10.1016/S0960-9822(03)00432-9
 
Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W (2004). Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36: 1291-1295.
http://dx.doi.org/10.1038/ng1468
PMid:15516931
Lewis A, Reik W (2006). How imprinting centres work. Cytogenet Genome Res. 113: 81-89.
http://dx.doi.org/10.1159/000090818
PMid:16575166
 
Li E (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3: 662-673.
http://dx.doi.org/10.1038/nrg887
PMid:12209141
 
Li E, Beard C, Jaenisch R (1993). Role for DNA methylation in genomic imprinting. Nature 366: 362-365.
http://dx.doi.org/10.1038/366362a0
PMid:8247133
 
Li JY, Less-Murdock DJ, Xu GL, Walsh CP (2004). Timing of establishment of paternal methylation imprints in the mouse. Genomics 84: 952-960.
http://dx.doi.org/10.1016/j.ygeno.2004.08.012
PMid:15533712
 
Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1/Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35: 97-102.
http://dx.doi.org/10.1038/ng1233
PMid:12937418
 
Liu J, Chen M, Deng C, Bourc'his D, Nealon JG, Erlichman B, Bestor TH, Weinstein LS (2005). Identification of the control region for tissue-specific imprinting of the stimulatory G protein alpha-subunit. Proc. Natl. Acad. Sci. USA 102: 5513-5518.
http://dx.doi.org/10.1073/pnas.0408262102
PMid:15811946 PMCid:PMC556240
 
Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forne T, Murrell A, Constancia M, Bartolomei M, Walter J, Reik W (2003). Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interaction. Hum. Mol. Genet. 12: 295-305.
http://dx.doi.org/10.1093/hmg/ddg022
PMid:12554683
 
Lucifero D, Mann MR, Bartolomei MS, Trasler JM (2004). Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13: 839-849.
http://dx.doi.org/10.1093/hmg/ddh104
PMid:14998934
 
Luedi PP, Hartemink AJ, Jirtle RL (2005). Genome-wide prediction of imprinted murine genes. Genome Res. 15: 875-884.
http://dx.doi.org/10.1101/gr.3303505
PMid:15930497 PMCid:PMC1142478
 
Lyon MF (1998). X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80: 133-137.
http://dx.doi.org/10.1159/000014969
PMid:9678347
 
Martienssen RA (2003). Maintenance of heterochromatin by RNA interference of tandem repeats. Nat. Genet. 35: 213-214.
http://dx.doi.org/10.1038/ng1252
PMid:14593407
 
Matzke MA, Birchler JA (2005). RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6:24-35.
http://dx.doi.org/10.1038/nrg1500
PMid:15630419
 
McGrath J, Solter D (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179-183.
http://dx.doi.org/10.1016/0092-8674(84)90313-1
 
Metz CW (1938). Chromosome behaviour, inheritance and sex determination in Sciara. Am. Nat. 72: 485-520.
http://dx.doi.org/10.1086/280803
 
Moore T, Haig D (1991). Genomic imprinting in mammalian development : a parental tug-of-war. Trends Genet. 7: 45-49.
http://dx.doi.org/10.1016/0168-9525(91)90040-W
http://dx.doi.org/10.1016/0168-9525(91)90230-N
 
Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305: 1289-1292.
http://dx.doi.org/10.1126/science.1101372
PMid:15297624
 
Murrell A, Heeson S, Reik W (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet. 36: 889-893.
http://dx.doi.org/10.1038/ng1402
PMid:15273689
 
Neumann B, Kubicka P, Barlow DP (1995). Characteristics of imprinted genes. Nat. Genet. 9: 12-13.
http://dx.doi.org/10.1038/ng0195-12
PMid:7704015
 
Nolan CM, Killian JK, Petitte JN, Jirtle RL (2001). Imprint status of M6P/IGF2R and IGF2 in chickens. Dev. Genes Evol. 211: 179-183.
http://dx.doi.org/10.1007/s004270000132
PMid:11455432
 
Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Grewal SI (2004). RITS acts in cis to promote RNA inteference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36: 1174-1180.
http://dx.doi.org/10.1038/ng1452
PMid:15475954
 
Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T (1998). Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125: 1553-1560.
PMid:9502736
 
Obata Y, Kono T (2002). Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J. Biol. Chem. 277: 5285-5289.
http://dx.doi.org/10.1074/jbc.M108586200
PMid:11713250
 
O'Neill MJ (2005). The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum. Mol. Genet. 14 Spec. No. 1: R113-120.
 
O'Neill MJ, Ingram RS, Vrana PB, Tilghman SM (2000). Allelic expression of IGF2 in marsupials and birds. Dev. Genes. Evol. 210: 18-20.
http://dx.doi.org/10.1007/PL00008182
PMid:10603082
 
Paoloni-Giacobino, Chaillet JR, (2006). The role of DMDs in the maintenance of epigenetic states. Cytogenet. Genome Res. 113: 116-121.
http://dx.doi.org/10.1159/000090822
PMid:16575170
 
Paulsen M, Khare T, Burgard C, Tierling S, Walter J (2005). Evolution of the Beckwith-Wiedemann syndrome region in vertebrates. Genome Res. Commun. 15: 146-153.
http://dx.doi.org/10.1101/gr.2689805
PMid:15590939 PMCid:PMC540281
 
Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C et al. (2001). Comparative sequence analysis of the imprinted Dlk-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res. 11: 2085-2094.
http://dx.doi.org/10.1101/gr.206901
PMid:11731499 PMCid:PMC311216
 
Purbowasito W, Suda C, Yokomine T, Zubair M, Sado T, Tsutsui K, Sasaki H (2004). Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chormosome 7. DNA Res. 11: 391-407.
http://dx.doi.org/10.1093/dnares/11.6.391
PMid:15871462
 
Rand E, Cedar H (2003). Regulation of imprinting : A multitiered process. J. Cell Biochem. 88: 400-407.
http://dx.doi.org/10.1002/jcb.10352
PMid:12520543
 
Razin A, Shemer R (1995). DNA methylation in early development. Hum. Mol. Genet. 4: 1751-1755.
PMid:8541875
 
Reale A, Matteis GD, Galleazzi G, Zampieri M, Caiafa P (2005). Modulation of DNMT1 activity by ADP-ribose polymers. Oncogene 24: 13-19.
http://dx.doi.org/10.1038/sj.onc.1208005
PMid:15637587
 
Reik W, Walter J (2001a). Evolution of imprinting mechanisms : the battle of the sexes begins in the zygote. Nat. Genet. 27: 255-256.
http://dx.doi.org/10.1038/85804
PMid:11242103
 
Reik W. Walter J (2001b). Genomic imprinting : parental influence on the genome. Nat. Rev. Genet. 2: 21-32.
http://dx.doi.org/10.1038/35047554
http://dx.doi.org/10.1038/35048096
 
Robb GB, Brown KM, Khurana J, Rana TM (2005). Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12:133-137.
http://dx.doi.org/10.1038/nsmb886
PMid:15643423
 
Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K et al. (2005). The DNA sequence of the human X chromosome. Nature 434: 325-337.
http://dx.doi.org/10.1038/nature03440
PMid:15772651 PMCid:PMC2665286
 
Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi V, Viegas-Pequignot E (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12: 2108-2113.
http://dx.doi.org/10.1101/gad.12.14.2108
PMid:9679055 PMCid:PMC317005
 
Rubin CM, VandeVoort CA, Teplitz RL, Schmid CW (1994). Alu repeated DNAs are differentially methylated in primate germ cells. Nucleic Acids Res. 22: 5121-5127.
http://dx.doi.org/10.1093/nar/22.23.5121
PMid:7800508 PMCid:PMC523786
 
Sarma K, Reinberg D (2005). Histone variants meet their match. Nat. Rev. Mol. Cell Biol. 6: 139-149.
http://dx.doi.org/10.1038/nrm1567
PMid:15688000
 
Schrader F, Hughes-Schrader S (1931). Haploidy in metazoa. Q. Rev. Biol. 6: 411-438.
http://dx.doi.org/10.1086/394388
 
Scott RJ, Spielman M (2004). Imprinting in plants and mammals – the same but different? Curr. Biol. 14: R201-R203.
http://dx.doi.org/10.1016/j.cub.2004.02.022
PMid:15028238
 
Selker, EU, Stevens JN (1985). DNA methylation at asymmetric sites is associated with numerous transition mutations. Proc. Natl. Acad. Sci. USA 82: 8114-8118.
http://dx.doi.org/10.1073/pnas.82.23.8114
PMid:2415981 PMCid:PMC391453
 
Sleutels F, Zwart R, Barlwo DP (2002). The non-coding Air RNA is required for silencing autosomal impirinted genes. Nature 415: 810-813.
http://dx.doi.org/10.1038/415810a
PMid:11845212
 
Surani MA (2001). Reprogramming of genome function through epigenetic inheritance. Nature 414: 122-128.
http://dx.doi.org/10.1038/35102186
PMid:11689958
 
Surani MA, Barton SC, Norris ML (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gameto-genesis. Nature 308: 548-550.
http://dx.doi.org/10.1038/308548a0
PMid:6709062
 
Suzuki S, Renfree MB, Pask AJ, Shaw G, Kobayashi S, Kohda T, Kaneko-Ishino T, Ishino F (2005). Genomic imprinting of IGF2, p57KIP2 and PEG1/MEST in a marsupial, the tammar wallaby. Mech. Dev. 122: 213-222.
http://dx.doi.org/10.1016/j.mod.2004.10.003
PMid:15652708
 
Tamaru H, Selker EU (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277-283.
http://dx.doi.org/10.1038/35104508
PMid:11713521
 
Tanaka M, Puchyr M, Gerstenstein M, Harpal K, Jaenisch R, Rossant J, Nagy A (1999). Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genomic-wide demethylation. Mech. Dev. 87: 129-142.
http://dx.doi.org/10.1016/S0925-4773(99)00158-6
 
Thorvaldsen JL, Duran KL, Bartolomei MS (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12: 3693-3702.
http://dx.doi.org/10.1101/gad.12.23.3693
PMid:9851976 PMCid:PMC317260
 
Tilghman SM (1999). The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96: 185-193.
http://dx.doi.org/10.1016/S0092-8674(00)80559-0
 
Turker MS, Bestor TH (1997). Formation of methylation patterns in the mammalian genome. Mutat. Res. 386: 119-139.
http://dx.doi.org/10.1016/S1383-5742(96)00048-8
 
Ueda T, Abe K, Miura A, Yuzuriha M, Zubair M, Noguchi M, Niwa K, Kawase Y, Kono T, Matsuda Y, Fujimoto H, Shibata H

 


APA (2013). Genomic imprinting: A general overview. Biotechnology and Molecular Biology Reviews, 8(2), 18-34.
Chicago Muniswamy K. and Thamodaran P.. "Genomic imprinting: A general overview." Biotechnology and Molecular Biology Reviews 8, no. 2 (2013): 18-34.
MLA Muniswamy K. and Thamodaran P.. "Genomic imprinting: A general overview." Biotechnology and Molecular Biology Reviews 8.2 (2013): 18-34.
   
DOI 10.5897/BMBR07.003
URL http://academicjournals.org/journal/BMBR/article-abstract/F5B457640317

Subscription Form