International Journal of Biodiversity and Conservation
Subscribe to IJBC
Full Name*
Email Address*

Article Number - 8FA560E63829


Vol.9(5), pp. 115-121 , May 2017
DOI: 10.5897/IJBC2016.1065
ISSN: 2141-243X



Full Length Research Paper

Chemical soil attributes of Cerrado areas under different recovery managements or conservation levels



Thaís Soto Boni
  • Thaís Soto Boni
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Kellian Kenji Gonzaga da SIlva Mizobata
  • Kellian Kenji Gonzaga da SIlva Mizobata
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Marcela Sant’anna Cordeiro da Silva
  • Marcela Sant’anna Cordeiro da Silva
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Laís Naiara Honorato Monteiro
  • Laís Naiara Honorato Monteiro
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Rayner Sversut Barbieri
  • Rayner Sversut Barbieri
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Katia Luciene Maltoni
  • Katia Luciene Maltoni
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Marcelo Carvalho Minhoto Teixeira Filho
  • Marcelo Carvalho Minhoto Teixeira Filho
  • UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Engenharia de Ilha Solteira, Brazil.
  • Google Scholar
Emmanuel Hosiana Masenga
  • Emmanuel Hosiana Masenga
  • Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania.
  • Google Scholar
Richard Daniel Lyamuya
  • Richard Daniel Lyamuya
  • Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania.
  • Google Scholar
Ernest Eblate Mjingo
  • Ernest Eblate Mjingo
  • Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania.
  • Google Scholar
Robert Dominikus Fyumagwa
  • Robert Dominikus Fyumagwa
  • Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania.
  • Google Scholar
Eivin Røskaft
  • Eivin Røskaft
  • Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget, NO-7491 Trondheim, Norway.
  • Google Scholar







 Received: 13 December 2016  Accepted: 30 March 2017  Published: 31 May 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The aquatic macrophytes removed from hydroelectric power plants, as well as boiler ash derived from burning sugarcane bagasse can provide nutrients and recover degraded soils more quickly. Thus, this study aimed to evaluate the chemical attributes of a degraded soil in recovery process with mechanical preparation, with or without addition of organic residue (aquatic macrophytes) or agroindustrial residue (ash from sugarcane bagasse), compared to a degraded area without interference  in the time of soil removal and in a conserved Cerrado area. The experimental design was a randomized block with four replications. The treatments were: conserved Cerrado soil (T1), area of degraded soil without human intervention since their degradation (T2), soil with mechanized preparation without addition of residue (T3), soil with mechanized preparation and addition of 32 Mg ha-1 of organic residue (T4), soil with mechanical preparation and addition of 45 Mg ha-1 of agroindustrial residue (T5). The orthogonal contrasts analyzed were C1 [(T2+T3+T4+T5)/4 -T1], C2 [(T2+T3) - (T4+T5)], C3 [(T2) -(T3)] and C4 [(T4) - (T5)]. In general, the chemical attributes of degraded soil increased after the incorporation of organic and agroindustrial residue, which is higher than the soil of the conserved Cerrado area. The boiler ash contributed most, to increase the nutrient content and fertility of the degraded soil.

 

Key words: Aquatic macrophytes, ash from sugarcane bagasse, degraded soil, fertility, soil tillage.

Alves MC, Suzuki LG, Suzuki LE (2007). Soil bulk density and water infiltration rate as indicators of physical quality recovery of an oxisol. Revista Brasileira de Ciência do Solo 31(4):617-625.
Crossref

 

Augusto L, Bakker MR, Meredieu C (2008). Wood ash applications to temperate forest ecosystems: potential benefits and drawbacks. Plant Soil 306:181-198.
Crossref

 
 

Balakrishnan M, Batra VS (2011). Valorization of solid waste in sugar factories with possible applications in India: A review. J. Environ. Manag. 92(11):2886-2891.
Crossref

 
 

Bonini CSB, Alves MC, Montanari R (2015). Sewage sludge and mineral fertilization on recovery of chemical properties of a degraded soil. Revista Brasileira de Engenharia Agrícola e Ambiental 19(4):388-393.
Crossref

 
 

Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma 124(1):3-22.
Crossref

 
 

Calgaro HF, Valério Filho WV, Aquino SS, Maltoni KL, Cassiolato AMR (2008). Chemical and organic fertilization of degraded soil and mycorrhization of Stryphnodendron polyphyllum. Revista Brasileira de Ciência do Solo 32(3):1337-1347.
Crossref

 
 

Câmara MYF, Pinto LES, Freitas FBA, Pinto FGH, Santos AGD, Martins DFF (2015). Determination of potential phytoremediation of natural environments in Eichhornia crassipes. Blucher Chem. Proceed. São Paulo 3:1.

 
 

Carneiro MAC, Souza ED, Reis EF, Pereira HS, Azevedo WR (2009). Physical, chemical and biological properties of cerrado soil under different land use and tillage systems. Revista Brasileira de Ciência do Solo 33(1):147-157.
Crossref

 
 

Carrier M, Harieb AG, Arasa U, Gorgensa J, Knoetzea JH (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J. Anal. Appl. Pyrol. 96:24-32.
Crossref

 
 

Colodro G, Espíndola CR (2006). Fertility changes in a degraded latosol due to sewage sludge application. Acta Scientiarum Agron. 28(1):1-5.

 
 

Costa VL, Maria IC, Camargo OA, Grego CR, Melo LCA (2014). Spatial distribution of phosphorus in an Oxisol amended with sewage sludge and mineral fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental 18(3):287-293.
Crossref

 
 

Duboc E, Guerrini IA (2007). Initial growth and survival by gallery forest species in savana domain in response to fertilization. Energia na Agricultura 22(1):42-60.

 
 

Durigan G, Melo ACG, Max JCM, Boas OV, Contieri WA, Ramos VS (2011). Manual for recovery of Cerrado vegetation. 3ed. Revisada e atualizada. São Paulo: SMA. 19p.

 
 

Eggleston G, Lima I (2015). Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability 7(9):12209-12235.
Crossref

 
 

Feitosa DG, Maltoni KL, Silva IPF (2009). Evaluation of the ash originated from the burning process of sugarcane bagasse in replacement of the conventional chemical fertilization for food production and environmental preservation. Revista Brasileira de Agroecologia 4(2):2412-2415.

 
 

Ferreira DF (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35(6):1039-1042.
Crossref

 
 

Ferreira EPB, Fageria NK, Didonet AD (2012). Chemical properties of an Oxisol under organic management as influenced by application of sugarcane bagasse ash. Revista Ciência Agronômica 43(2):228-236.
Crossref

 
 

Galindo FS, Nogueira LM, Bellotte JLM, Gazola RN, Alves CJ, Teixeira Filho, MCM (2015). Agronomic performance of maize in function of the application of biostimulants of algae extract. Tecnologia & Ciência Agropecuária 9(1):13-19.

 
 

Gunnarsson CC, Petersen CM (2007). Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 27(1):117-129.
Crossref

 
 

Henry-Silva GG, Camargo AFM (2008). Treatment of shrimp effluents by free-floating aquatic macrophytes. Revista Brasileira de Zootecnia 37(2):181-188.
Crossref

 
 

Kitamura AE, Alves MC, Suzuki LGAS, Gonzalez AP (2008). Recovery of a degraded soil with green manure and sewage sludge. Revista Brasileira de Ciência do Solo 32:405-416.
Crossref

 
 

Lima CC (2011). Availability of phosphorus for sugarcane in soil treated with silicon rich organic composts. Revista Brasileira de Engenharia Agrícola e Ambiental 15(12):1222-1228.
Crossref

 
 

Malavolta E, Vitti GC, Oliveira SA (1997). Evaluation of the nutritional status of plants: principles and applications.2. ed. Piracicaba: Potafós. 319 p.

 
 

Machado KS, Maltoni KL, Santos CM, Cassiolato AMR (2014). Organic residue and phosphorus as conditioners of degraded soil and effects on the initial growth of Dipteryx alata Vog. Ciência Florestal 24(3):541-552.

 
 

Marques TED, Baêta HE, Leite MGP, Martins SV, Kozovits AR (2014). Growth of Cerrado native species and of Vetiveria zizanioides in colluvium of gullies. Ciência Florestal 24(4):843-856.

 
 

Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 111:64-71.
Crossref

 
 

Modesto PT, Scabora MH, Colodro G, Maltoni KL, Cassiolato AMR (2009). Alterations in some properties of a degraded oxisol by sewage sludge and organic residue application. Revista Brasileira de Ciência do Solo 22(1):1489-1498.
Crossref

 
 

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000). Biodiversity hotspots for conservation priorities. Nature 403:853-858.
Crossref

 
 

Nayak AK, Raja R, Rao KS, Shukla AK, Mohanty S, Shahid M, Tripathi R, Panda B B, Battacharyya P, Kumar A, Lal B, Sethi SK, Puri C, Nayak D, Swain CK (2015). Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicol. Environ. Saf. 114:257-262.
Crossref

 
 

Najar IA, Khan AB, Hai A (2015). Effect of macrophyte vermicompost on growth and productivity of brinjal (Solanum melongena) under field conditions. Int. J. Recycl. Org. Waste Agric. 4(2):73-83.
Crossref

 
 

Oliveira ECA, Freire FJ, Oliveira RI, Freire MBGS, Simões Neto DE, Silva SAM (2010). Nutrient extraction and export by fully irrigated sugarcane varieties. Revista Brasileira de Ciência do Solo 34(4):1343-1352.
Crossref

 
 

Pavan MA, Chaves JCD (1998). The importance of organic matter in agricultural systems. Londrina: IAPAR 36 p.

 
 

Pavinato PS, Rosolem CA (2008). Effects of organic compounds produced by plants on soil nutrient availability. Revista Brasileira de Ciência do Solo 32(3):911-920.
Crossref

 
 

Pedrol N, Puig CG, Souza P, Forján R, Veja FA, Asensio V, González L, Cerqueira B, Covelo, EF, Andrade L (2010). Soil fertility and spontaneous revegetation in lignite spoil banks under different amendments. Soil Tillage Res. 110(1):134-142.
Crossref

 
 

Pinto JRR, Bordini MCP, Porto AC, Sousa-Silva JC (2011). Principles and techniques used in the recovery of degraded areas. In: FAGG, C. W., MUNHOZ, C. B. R., SOUSA-SILVA, J. C. Conservation areas of permanent preservation of the Cerrado. Brasília: CRAD pp. 149-184.

 
 

Raij BV, Andrade, JC, Cantarella H, Quaggio JA (2001). Chemical analysis for assessment of tropical soil fertility. Campinas: Instituto Agronômico 285p.

 
 

Ram LC, Masto RE (2014). Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments. Earth-Sci. Rev.128:52-74.
Crossref

 
 

Rodrigues GB, Maltoni KL, Cassiolato AMR (2007). Dynamics of the subsoil regeneration in degraded areas of Cerrado. Revista Brasileira de Engenharia Agrícola Ambiental 11(1):73-80.
Crossref

 
 

Sakadevan K, Bavor HJ (1999). Nutrient removal mechanisms in constructed wetlands and sustainable water management. Water Sci. Technol. 40(2):121-128.
Crossref

 
 

Sampaio EVSB, Oliveira NMB (2005). Use of aquatic plant (Egeria densa) as an organic fertilizer. Planta Daninha 23(2):169-174.
Crossref

 
 

Sloan S (2014). Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv.177:12-24.
Crossref

 
 

Thomaz SM, Esteves SA, Murphy KJ, Santos AM, Caliman A, Guariento RD (2008). Aquatic macrophytes in the tropics: ecology of populations and communities, impacts of invasions and use by man. Tropical Biology and Conservation management.

 
 

Trlica A, Brown S (2013). Greenhouse gas emissions and the interrelation of urban and forest sectors in reclaiming one hectare of land in the Pacific Northwest. Environ. Sci. Technol. 47(13):7250-7259.
Crossref

 
 

Viani RAG, Durigan G, Melo ACG (2010). Natural regeneration under forest plantations: "green deserts" or milieu for biodiversity? Ciência Florestal, 20(3):533-552.

 

 


APA Boni, T. S., Mizobata, K. K. G. S., da Silva, M. S. C., Monteiro, L. N. H., Barbieri, R. S., Maltoni, K. L., & Filho, M. C. M. T. (2017). Chemical soil attributes of Cerrado areas under different recovery managements or conservation levels. International Journal of Biodiversity and Conservation, 9(5), 115-121.
Chicago Tha&is Soto Boni, Kellian Kenji Gonzaga da SIlva Mizobata, Marcela Sant’anna Cordeiro da Silva, La&is Naiara Honorato Monteiro, Rayner Sversut Barbieri, K&atia Luciene Maltoni and Marcelo Carvalho Minhoto Teixeira Filho. "Chemical soil attributes of Cerrado areas under different recovery managements or conservation levels." International Journal of Biodiversity and Conservation 9, no. 5 (2017): 115-121.
MLA Thaiacute;s Soto Boni, et al. "Chemical soil attributes of Cerrado areas under different recovery managements or conservation levels." International Journal of Biodiversity and Conservation 9.5 (2017): 115-121.
   
DOI 10.5897/IJBC2016.1065
URL http://academicjournals.org/journal/IJBC/article-abstract/8FA560E63829

Subscription Form