International Journal of Biotechnology and Molecular Biology Research
Subscribe to IJBMBR
Full Name*
Email Address*

Article Number - 99E48FE66109


Vol.8(2), pp. 20-29 , September 2017
https://doi.org/10.5897/IJBMBR2017.0274
ISSN: 2141-2154


 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Evaluation of two Portuguese strains of Botryococcus braunii as biofuel feedstock



Joao Tavares
  • Joao Tavares
  • Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Google Scholar
Tiago Pardal
  • Tiago Pardal
  • Omnidea, Lda.Trav. António Gedeão 9, 3510-017 Viseu, Portugal.
  • Google Scholar
Ricardo Melo
  • Ricardo Melo
  • Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Google Scholar







 Received: 04 April 2017  Accepted: 05 September 2017  Published: 30 September 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


ACOI 58 and ACOI 1257, two different Portuguese strains of colonial green microalga Botryococcus bruanii Kutz obtained from Coimbra Collection of Algae (ACOI), were evaluated on their potential for biofuel production, which was assessed from batch culture in photobioreactors under indoors and outdoors conditions using pretreated waste water and semisynthetic culture media. In the experiments, the maximum specific growth rate achieved was 0.4 day-1 with doubling times ranging from 2 to 7 days in the fastest growing phase. However, both strains showed ability to absorb nutrients in waste water cultures, to grow and accumulate oil. The maximum lipid extraction on a dry matter basis was 36% in CHU media and 29% in waste water cultures, which revealed the promising potential of these B. braunii isolates to be used in biofuel production applications. This is also supported by the predominance of oleic (C18:1, 42 to 63%) and palmitic acid (C16:0, 8 to 18%) in the lipid extract, since the methyl esters of these fatty acids (FAME) are ideal for biodiesel production. In summary, although these strains of B. braunii have presented a typical growth for this species, they produced considerable lipid content and were able to grow in waste water and under outdoors conditions that warrants further investment in their study.

Key words: Microalga, Botryococcus braunii, wastewater, photobioreactors, biofuels.

An JY, Sim SJ, Lee JS, Kim BW (2003). Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J. Appl. Phycol. 15:185-191.
Crossref

 

Ashokkumar V, Rengasamy R (2012). Mass culture of Botryococcus braunii Kütz under open raceway pond for biofuel production. Bioresour. Technol. 104:394-399.
Crossref

 

Belcher JH (1968). Notes on the Physiology of Botryococcus braunii Kiitzing. Archiv für Mikrobiologie 61:335-346.
Crossref

 

Bendschneider K, Robison NJ (1952). A new spectrophotometric determination of nitrite in seawater. J. Mar. Res. 11:87-96.

 

Bligh EG, Dyer WJ (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.
Crossref

 

Canakci M, Van Gerpen J (2001). Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 44:1429-1436.
Crossref

 

Cheng P, Ji B, Gao L, Zhang W, Wang J, Liu T (2013). The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol. 138:95-100.
Crossref

 

Chisti Y (2007). Biodiesel from microalgae. Biotechnol. Adv. 25(3):294-306.
Crossref

 

Dayananda C, Kumudha A, Sarada R, Ravishankar GA (2010). Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Essays 5:2497-2505.

 

Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2006). Influence of nitrogen sources on growth, hydrocarbon and fatty acid production by Botryococcus braunii. Asian J. Plant Sci. 5(5):799-804.
Crossref

 

Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007). Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg. 31:87-93.
Crossref

 

Elsey D, Jameson D, Raleigh B, Cooney MJ (2007). Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Methods. 68:639-642.
Crossref

 

Grasshoff K (1976). Methods of Seawater Analysis. Verlag Chimie, New York.

 

Huang Z, Poulter CD (1989). Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:146-1470.
Crossref

 

Indarti E, Majid M, Hashim R, Chong A (2005). Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compost Anal. 18:161-170.
Crossref

 

Ioki M, Ohkoshi M, Nakajima N, Nakahira-Yanaka Y, Watanabe MM (2012). Isolation of herbicide-resistant mutants of Botryococcus braunii. Bioresour. Technol. 109:300-303.
Crossref

 

Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012). Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii, Algal Res. 1:114-119.
Crossref

 

Kojima E, Zhang K (1999). Growth and hydrocarbon of microalga B. braunii in bubble column photobioreactors. J. Biosci. Bioeng. 87:811-815.
Crossref

 

Koroleff F (1969). Direct determination of ammonia in natural waters as indophenol blue. International Council for the Exploration of the Sea (ICES) Comm. Meet. Pap. 1969/C: 9; revised 1970:19-22.

 

Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8):4945-4953.
Crossref

 

Largeau C, Casadevall E, Berkaloff C, Dharnliencourt P (1980). Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043-1051.
Crossref

 

Lee SJ, Yoon BD, Oh HM (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Technol. 12:553-556.
Crossref

 

Li Y, Qin JG (2005). Comparison of growth and lipid content in three Botryococcus braunii strains. J. Appl. Phycol. 17:551-556.
Crossref

 

Knothe G (2008). Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22(2):1358-1364.
Crossref

 

Mata TM, Martins AA, Caetano NS (2010). Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 14(1):217-232.
Crossref

 

Metzger P, Largeau C (2005). Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 66(5):486-496.
Crossref

 

Metzger P, Allard B, Casadevall E, Berkaloff C, Couté A (1990). Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol. 26:258-266.
Crossref

 

Metzger P, Berkaloff C, Couté A, Casadevall E (1985). Alkadiene and botryococcene producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305-2312.
Crossref

 

Miao XL, Wu QY (2006). Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97:841-846.
Crossref

 

Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta 27:31-36.
Crossref

 

Nascimento IA, Marques SSI,Cabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Vich DV, de Carvalho GC, Nascimento MA (2013). Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Res. 6:1-13.
Crossref

 

Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agrawal GK, Rakwal R (2013). Biofuels as a sustainable energy source: An update of the applications of proteomics in bioenergy crops and algae. J. Proteom. 93:234-44.
Crossref

 

Nyberg H (1986). GC-MS methods for lower plant glycolipid fatty acids. In Gas Chromatographyl/Mass Spectromandry, Linskens HF, Jackson JF (ed). Springer-Verlag: Berlin 3:67-99.
Crossref

 

Órpez R, Martínez ME, Hodaifa G, Yousfi F, Jbari N, Sánchez S (2009). Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625-630.
Crossref

 

Qin J (2005). Bio-hydrocarbons from algae: Impacts of temperature, light and salinity on algae growth. A Report for the Rural Industries Research and Development Corporation, Australian Government. RIRDC Publication No 05/025 and RIRDC Project No SQC-1A. p. 18.

 

Rao AR, Sarada R, Ravishankar GA (2007). Influence of CO2 on Growth and Hydrocarbon Production in Botryococcus braunii. J. Microbiol. Biotechnol. 17(3):414-419.

 

Sawayama S, Inoue S, Yokoyama S (1994). Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 41:729-731.
Crossref

 

Sawayama S, Minowa T, Dote Y, Yokoyama S (1992). Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 38:135-138.
Crossref

 

Serra T, Zilberman D (2013). Biofuel-related price transmission literature: A review. Energ. Econ. 37:141-151.
Crossref

 

Shiho M, Kawachi M, Horioka K, Nishita Y, Ohashi K, Kaya K, Watanabe MM (2012). Business evaluation of a green microalga Botryococcus braunii oil production system. Procedia Environ. Sci. 15:90-109.
Crossref

 

Singh A, Smyth BM, Murphy JD (2010). A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew. Sustain. Energ. Rev. 14:277-288.
Crossref

 

Singh Y, Kumar HD (1992). Lipid and hydrocarbon production by Botryococcus spp. under nitrogen limitation and anaerobiosis. World J. Microbiol. Biotechnol. 8:121-124.
Crossref

 

Stein J (1973). Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press. P 448.

 

Talukdar I, Kalita MC, Goswami BC (2013). Characterization of the biofuel potential of a newly isolated strain of the microalga Botryococcus braunii Kützing from Assam. Bioresour. Technol. 149:268-275.
Crossref

 

Tasić MB, Pinto LFR, Klein BC, Veljković VB, Filho RM (2016). Botryococcus braunii for biodiesel production. Renew. Sust. Energ. Rev. 64:260-270.
Crossref

 

Wolf FR (1983). Botryococcus braunii. An Unusual Hydrocarbon-Producing Alga. Appl. Biochem. Biotechnol. 8:249-260.
Crossref

 

Wolf FR, Nonomura AM, Bassham JA (1985). Growth and Branched Hydrocarbon Production in a strain of Botryococcus braunii (chlorophyta). J. Phycol. 21(3):388-396.
Crossref

 

Xu H, Miao XL, Wu QY (2006). High quality biodiesel production from a microalga chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126:499-507.
Crossref

 

Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H (1987). Lipid composition of a green alga, Botryococcus braunii. Agric. Biol. Chem. Tokyo 51:493-498.

 


APA Tavares, J., Pardal, T., & Melo, R. (2017). Evaluation of two Portuguese strains of Botryococcus braunii as biofuel feedstock. International Journal of Biotechnology and Molecular Biology Research, 8(2), 20-29.
Chicago João Tavares, Tiago Pardal and Ricardo Melo,. "Evaluation of two Portuguese strains of Botryococcus braunii as biofuel feedstock." International Journal of Biotechnology and Molecular Biology Research 8, no. 2 (2017): 20-29.
MLA Joatilde;o Tavares, et al. "Evaluation of two Portuguese strains of Botryococcus braunii as biofuel feedstock." International Journal of Biotechnology and Molecular Biology Research 8.2 (2017): 20-29.
   
DOI https://doi.org/10.5897/IJBMBR2017.0274
URL http://academicjournals.org/journal/IJBMBR/article-abstract/99E48FE66109

Subscription Form