International Journal of Computer Engineering Research
Subscribe to IJCER
Full Name*
Email Address*

Article Number - 0208F0359126


Vol.6(2), pp. 8-16 , May 2016
DOI: 10.5897/IJCER2015.0235
ISSN: 2141-6494



Full Length Research Paper

In silico study in mitochondrial and chloroplast genomes of plants



G. V. Padma Raju*
  • G. V. Padma Raju*
  • SRKR Engineering College, Bhimavaram, AP, India.
  • Google Scholar
P. Srinivasa Rao
  • P. Srinivasa Rao
  • AU College of Engineering, Andhra University, Visakhapatnam, AP, India.
  • Google Scholar
V. Chandra Sekhar
  • V. Chandra Sekhar
  • SRKR Engineering College, Bhimavaram, AP, India.
  • Google Scholar
C. Someswara Rao
  • C. Someswara Rao
  • SRKR Engineering College, Bhimavaram, AP, India.
  • Google Scholar







 Received: 18 June 2015  Accepted: 29 October 2015  Published: 31 May 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study, the mitochondrial and chloroplast genomes of different taxa of plants were surveyed. The present study only focused on different authors’ investigations and conclusions made based on their results in relation to the different plants. This study helps the researchers to know the different structures of plant genomes, improves the understanding of existing genomes and helps to find newer genomes.

Key words: Chloroplast, mitochondria, simple sequence repeats (SSRs), microsatellites, plants.

Bartoli CG, Facundo G, Dana EM, Juan JG (2004). Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Experimental Botany pp.1663-1669.
Crossref

 

Bausher MG, Nameirakpam DS, Seung-Bum L, Robert KJ, Henry Daniell (2006). The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms. BMC Plant. Biol. 6:1-21.
Crossref

 

Behura SK, Neil FL, Brian H, Diane DL, Martin FS, Daniela P, Jeanne R-S, Vishvanath N, David WS (2011). Complete sequences of mitochondria genomes of Aedes aegypti and Culex quinquefasciatus and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes. Insect Biochem. Mol. Biol. 41(10): 770-777.
Crossref

 

Zhou M, Xia L (2009). Analysis of synonymous codon usage patterns in different plant Mitochondrial genomes. Mol. Biol. Rep. 36(8): 2039-2046.
Crossref

 

Borecky J, Nogueira FTS, de Oliveira KAP (2006). The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots. J. Exp. Bot. 57(4):849-864.
Crossref

 

Brouard J-S, Christian O, Claude L, Monique T (2008). Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. BMC genomics 9:1-290.
Crossref

 

Brysting AK, Holst-Jensen A, Leitch I (2000). Genomic origin and organization of the hybrid Poa jemtlandica (Poaceae) verified by genomic in situ hybridization and chloroplast DNA sequences. Annals of botany. 85(4):439-445.
Crossref

 

Calegario FF, Ricardo GC, Marcia MF, Fernanda VA, Wilson FJ, Petr J, Paulo A, Anibal EV (2003). Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. J. Bioenerg. Biomembr. 35(3):211-220.
Crossref

 

Chang S, Tiantian Yang, Tongqing Du, Yongjuan Huang, Jianmei Chen, Jiyong Yan, Jianbo He, and Rongzhan Guan (2011). Mitochondrial genome sequencing helps show the evolutionary mechanism of Mitochondrial genome formation in Brassica. BMC genomics 12:1-497.
Crossref

 

Chung HJ, Jong DJ, Hyun-Woo P, Joo-Hwan K, Hyun WC, Sung RM, Won-Joong J, Jang RL (2006). The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant cell reports. 25(12):1369-1379.
Crossref

 

Cui H, Fangyuan L, David C, Guoli W, Cavatina KT, Gregory ME, Brett G (2013). Comprehensive next-generation sequence analyses of the entire Mitochondrial genome reveal new insights into the molecular diagnosis of Mitochondrial DNA disorders. Genet. Med. 15(5):388-394.
Crossref

 

Cronn R, Aaron L, Matthew P, David SG, Rongkun S, Todd M (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 36(19):e122-e122.
Crossref

 

Daniell H, Seung-Bum L, Justin G, Christopher S, Tania Q-V, Chittibabu G, Jeffrey T, Robert KJ (2006). Complete Chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet. 112(8): 1503-1518.
Crossref

 

de Cambiaire JC, Christian O, Claude L, Monique T (2006). The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol. Biol. 6:1-37.
Crossref

 

Dettai A, Cyril Gallut, Sophie Brouillet, Joel Pothier, Guillaume Lecointre, Régis Debruyne (2012). "Conveniently pre-tagged and pre-packaged: extended molecular identification and metagenomics using complete metazoan Mitochondrial genomes. PloS one 7:12- e51263. Desplanque B, F. Viard, J. Bernard, D. Forcioli, P. SauMitou‐Laprade, J. Cuguen, and H. Van Dijk (2000). The linkage disequilibrium between Chloroplast DNA and Mitochondrial DNA haplotypes in Beta vulgaris ssp. maritima (L.), the usefulness of both genomes for population genetic studies." Mol. Ecol. 9(2):141-154.

 

Gao L, Xuan Y, Yong-Xia Y, Ying-Juan S, Ting W (2009). "Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 9:1-130.
Crossref

 

Groenenberg DSJ, Walter Pirovano, Edmund Gittenberger, and Menno Schilthuizen (2012). The complete Mitogenome of Cylindrus Obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC genomics. 13:1-114.
Crossref

 

Hancock JM (1996). Simple sequences in a 'minimal'genome. Nature genet. 14(1):14-15.
Crossref

 

Hahn C, Lutz B., Bastien C. (2013). Reconstructing Mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129-e129.
Crossref

 

Handa H (2003). The complete nucleotide sequence and RNA editing content of the Mitochondrial genome of rapeseed (Brassica napus L.) comparative analysis of the Mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 31(20):5907-5916.
Crossref

 

Hirao T, Atsushi W, Manabu K, Teiji K, Katsuhiko T (2008). "Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species." BMC plant biol. 8:1-70.
Crossref

 

Hu ZY, Wei H, Shun-Mou H, Han-Zhong W (2011). Complete chloroplast genome sequence of rapeseed (Brassica napus L.) and its evolutionary implications." Genetic Resources and Crop Evolution 58(6): 875-887.
Crossref

 

Jackson CJ, John EN, Murray NS, Michael WG, Patrick JK, Ross FW (2007). "Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria." BMC biology 5:1-41.
Crossref

 

Jansen RK, Charalambos K, Christopher S, Seung-Bum L, Jeffrey T, Andrew JA, Henry D (2006). "Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids." BMC Evol. Biol. 6:1-32.
Crossref

 

Iannelli F, Francesca G, Graziano P, Carmela G (2007). The Mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evol. Biol. 7:1-155.
Crossref

 

Jianping D (2010). Mutation of Mitochondria genome: trigger of somatic cell transforming to cancer cell. Int. Arch. Med.3:1-4.
Crossref

 

Katti MV, Sami-Subbu R, Prabhakar KR, Vidya SG (2000). Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications. Prot. Sci. 9(06):1203-1209.
Crossref

 

Kim J-S, Jong DJ, Jung-Ae L, Hyun-Woo P, Kwang-Hoon O, Won-Joong J, Dong-Woog C, Jang RL, Kwang Yun Cho (2006). "Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome." Plant cell reports 25(4): 334-340.
Crossref

 

King RA, Colin F (2002). A variable minisatellite sequence in the chloroplast genome of Sorbus L. (Rosaceae: Maloideae). Genome. 45(3):570-576.
Crossref

 

Kubo T, Satsuki Nishizawa, Akira Sugawara, Noriko Itchoda, Amy Estiati, and Tetsuo Mikami. "The complete nucleotide sequence of the Mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys (GCA). Nucleic Acids Res. 28(13):2571-2576.
Crossref

 

Kuntal H, Vinay S (2011). In silico analysis of SSRs in Mitochondrial genomes of plants. Omics: a J. Integr. Biol. 15(11):783-789.

 

Lee CP, Holger E, Nicholas O'T, Harvey AM (2011). "Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria."Phytochemistry. 72(10):1092-1108.
Crossref

 

Li Y‐C Abraham BK, Tzion F, Avigdor B, Eviatar N (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11(12):2453-2465.
Crossref

 

Leseberg CH, Melvin RD (2009). The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. J. Mol. Evol. 69(4):311-318.
Crossref

 

Logacheva MD, Penin AA, Samigullin TH, Vallejo-Roman CM, Antonov AS (2007). Phylogeny of flowering plants by the chloroplast genome sequences: in search of a "lucky gene". Biochemistry (Moscow). 72(12):1324-1330.
Crossref

 

Masood MS Shahid, Tomotaro N, Shu-ichi F, Peter KN, Takahiko T, Koh-ichi K (2004). The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340(1):133-139.
Crossref

 

Ma PF, Zhen-Hua G, De-Zhu L (2012). Rapid sequencing of the bamboo Mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One. 7(1):1-13.
Crossref

 

Mollier P, Beate H, Cedrig D, Ian S (2002). The gene encoding Arabidopsis thaliana mitochondrial ribosomal protein S13 is a recent duplication of the gene encoding plastid S13. Current genetics. 40(6):405-409.
Crossref

 

Nakazono M, Nobuhiro T, Masahiro S, Atsushi H (1995). A small repeated sequence contains the transcription initiation sites for both trnfM and rrn26 in rice Mitochondria. Plant Mol. Biol. 28(2):343-346.
Crossref

 

Nishikawa T, Duncan A. Vaughan, and Koh-ichi Kadowaki (2005). Phylogenetic analysis of Oryza species, based on simple sequencerepeats and their flanking nucleotide sequences from the Mitochondrial and Chloroplast genomes. Theor. Appl. Genet. 110(4):696-705.
Crossref

 

Nock CJ, Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011). Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 9(3):328-33.
Crossref

 

Oliver MJ, Andrew GM, Brent DM, Jennifer VK, Jeffrey LB, Dina FM, Karin DE, Paul GW, Aaron MD, Kenneth GK (2010). Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC genomics 11:1-143.
Crossref

 

Rodríguez-Moreno L, Rodríguez-Moreno, L, Víctor MG, Andrej B, Carmen M, Pere P, Miguel AA, Jordi G (2011). "Determination of the melon Chloroplast and Mitochondrial genome sequences reveals that the largest reported Mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin." BMC genomics. 12:1- 424.
Crossref

 

Rohou H, Francisci S, Rinaldi T, Frontali L, Bolotin-Fukuhara M (2001). Reintroduction of a characterized Mit tRNA glycine mutation into yeast Mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 18(3):219-227.
Crossref

 

Rose C, Michael AJ, Yang Z, Jean C, Melinda D, Terry L, John M, Han CO, Elizabeth S, Gabrielle R (2008). Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains.

 

Shakyawar SK, Balwindar KJ, Dinesh K (2009). SSR repeat dynamics in mitochondrial genomes of five domestic animal species.Bioinformation. 4: 4-158.
Crossref

 

Shaw J, Edgar BL, Edward ES, Randall LS (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Ame J. Bot. 94(3):275-288.
Crossref

 

Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek Th, Vendramin GG (2001). Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol. Ecol. 10(1):257-263.
Crossref

 

Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005). The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet. Genomics. 272(6): 603-615.
Crossref

 

Taylor RW, Doug MT (2005). Mitochondrial DNA mutations in human disease", Nature Reviews Genetics 6(5): 389-402.
Crossref

 

Tang M, Meihua Tan, Guanliang Meng, Shenzhou Yang, Xu Su, Shanlin Liu, Wenhui Song (2014). "Multiplex sequencing of pooled Mitochondrial genomes-a crucial step toward biodiversity analysis using Mito-metagenomics. Nucleic Acids Res. 42(22):e166-e166.
Crossref

 

Tian X, Jing Zheng, Songnian Hu, and Jun Yu (2006). The rice Mitochondrial genomes and their variations. Plant Physiol. 140(2):401-410.
Crossref

 

Tóth G, Zoltán G, Jerzy J (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome research 10(7):967-981.
Crossref

 

Tsai LC, Yung-Chien Y, Hsing-Mei H, Jenn-Che W, Adrian L, James C-I (2006). Species identification using sequences of the trnL intron and the trnL-trnF IGS of chloroplast genome among popular plants in Taiwan. Forensic Sci. Int. 164(2):193-200.
Crossref

 

Turmel M, Christian Otis, and Claude Lemieux (2003). The Mitochondrial genome of Chara vulgaris: insights into the Mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell. 15(8):1888-1903.
Crossref

 

.Whittall JB, John S, Matthew P, Jason B, Dick C, Aaron L, Richard C (2010). Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Mol. Ecol. 19(1):100-114.
Crossref

 

Xiong A-S, Ri-He Peng, Jing Zhuang, Feng Gao, Bo Zhu, Xiao-Yan Fu, Yong Xue (2008). Gene duplication and transfer events in plant mitochondria genome. Biochem. Biophys. Res. Commun. 376(1):1-4.
Crossref

 

Xue J-Y, Yang L, Libo L, Bin W, Yin-Long Q (2010). The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Current genetics. 56(1):53-61.
Crossref

 

Xu Z, Dandan Z, Jun Hu, Xin Z, Xia Ye, Kristen LR, Nathan RS (2009). "Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC bioinformatics 10:11-3.
Crossref

 

Yuan Q, Hill J, Hsiao J, Moffat K, Ouyang S, Cheng Z, Jiang J, Buell C (2002). Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol. Genet. Genomics 267(6):713-720.
Crossref

 


APA Raju, G. V. P., Rao, P. S., Sekhar, V. C., & Rao, C. S. (2016). In silico study in mitochondrial and chloroplast genomes of plants. International Journal of Computer Engineering Research, 6(2), 8-16.
Chicago G. V. Padma Raju, P. Srinivasa Rao, V. Chandra Sekhar and C. Someswara Rao. "In silico study in mitochondrial and chloroplast genomes of plants." International Journal of Computer Engineering Research 6, no. 2 (2016): 8-16.
MLA G. V. Padma Raju, et al. "In silico study in mitochondrial and chloroplast genomes of plants." International Journal of Computer Engineering Research 6.2 (2016): 8-16.
   
DOI 10.5897/IJCER2015.0235
URL http://academicjournals.org/journal/IJCER/article-abstract/0208F0359126

Subscription Form