International Journal of Nutrition and Metabolism
Subscribe to IJNAM
Full Name*
Email Address*

Article Number - 2E14C4659996


Vol.8(4), pp. 24-29 , July 2016
DOI: 10.5897/IJNAM2016.0200
ISSN: 2141-2332



Full Length Research Paper

Anti-hyperglycemic effect of cocoyam (Xanthosoma sagittifollium) corm in alloxan-induced diabetic albino rats



Oluyemisi Folake FOLASIRE
  • Oluyemisi Folake FOLASIRE
  • Department of Human Nutrition, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
  • Google Scholar
Olayinka Ayotunde ORIDUPA
  • Olayinka Ayotunde ORIDUPA
  • Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
  • Google Scholar
Adedotun Joshua OWOLABI
  • Adedotun Joshua OWOLABI
  • Department of Human Nutrition, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
  • Google Scholar
Oladejo Thomas ADEPOJU
  • Oladejo Thomas ADEPOJU
  • Department of Human Nutrition, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
  • Google Scholar







 Received: 24 April 2016  Accepted: 11 July 2016  Published: 31 July 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Diabetes  mellitus constitutes a global public health concern and dietary approach is key to the control and prevention of lethal complications. This study investigated the hypoglycemic and anti-hyperglycemic effects of Xanthosoma sagittifolium-incorporated diets in normoglycemic and alloxan-induced diabetic rats. Seventy normoglycemic male Wistar strain albino rats (120 to 200 g) were divided into two groups of thirty-five each. Group 1 was randomly distributed into seven subgroups and each subgroup assigned to 100% rat pellets, X. sagittifolium-incorporated rat pellet (25, 50 and 75%), 100% X. sagittifolium , 100% X. sagittifolium + Glibenclamide (oral hypoglycaemic agent for treatment of diabetes) or 100% rat pellets + Glibenclamide. Diabetes was induced in Group 2 rats fasted for 12 h by intraperitoneal injection of Alloxan (100 mg/kg body weight). Initial fasting blood glucose levels (BGL) were recorded, and alloxan-treated rats with BGL >200 mg/dl 48 h post-induction were considered diabetic and divided into seven subgroups. Dietary treatment was carried out, and blood glucose level (BGL) monitored for 14 days. Data obtained were analyzed using one way analysis of variance (ANOVA) and Tukey’s post-hoc test at p< 0.05.  X. sagittifolium caused a significant reduction in the BGL of alloxan-induced diabetic rats (p<0.05) but no hypoglycemic effect in normoglycemic rats. Rats fed 25% (BGL:165.2±16.9 mg/dl), 50% (BGL: 189.2±15.9 mg/dl) and 75% (BGL:152.0±23.0 mg/dl) X. sagittifolium showed better control of BGL by 24 h post-prandial compared with rats administered glibenclamide  (BGL: 195.0±18.6 mg/dl) and 100% X. sagittifolium (BGL: 221.0±17.0 mg/dl). Rats fed 75% (BGL: 118.4±11.0 mg/dl) or 100% (BGL: 97.0±17.1 mg/dl) X. sagittifolium had better controlled BGL compared with rats fed pellets and pellets + glibenclamide (BGL: 154.2±19.8 mg/dl) on day 7. X. sagittifolium corm has an antihyperglycemic effect, and its consumption should be encouraged among diabetic patients as a good replacement for other high-calorie diets.

Key words: Antihyperglycemic effect, Xanthosoma sagittifolium, diabetes mellitus, albino rat.

 

Adaramoye OA, Lawal SO (2014). Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on the antioxidant, hormonal and spermatogenic indices of diabetic male rats. Andrologia 46(8):878-886.
Crossref

 

Adeyi AO, Idowu BA, Mafiana CF, Oluwalana SA, Ajayi OL, Akinloye OA (2012). Rat model of food-induced non-obese-type 2 diabetes mellitus: comparative pathophysiology and histopathology. Int. J. Physiol. Pathophysiol. Pharmacol. 4(1):51-58.

 
 

Amusa TA, Enete AA, Okon UE (2011). Socioeconomic determinants of cocoyam production among small holder farmers in Ekiti state, Nigeria. Int. J. Agric. Ecol. Rural Dev. 4(2):97-109.

 
 

Arruda SF, Siqueira EMA, Souza EMT (2004). Malanga (Xanthosoma sagittifolium) and Purslane (Portulaca oleracea) leaves reduce oxidative stress in vitamin D-deficient rats. Ann. Nutr. Metab. 48(4):288-295.
Crossref

 
 

Bahmani M, Zargaran A, Rafieian-Kopaei M, Saki K (2014). Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac. J. Trop. Med. 7S1:S348-354.

 
 

Bloomgarden ZT (2004). Type 2 Diabetes in the Young: The evolving epidemic. Diabetes Care 27(4):998-1010.
Crossref

 
 

De Almeida JE, Monteiro EB, Raposo HF, Vanzela EC, Amaya-Farfán J (2013). Taioba (Xanthosoma sagittifolium) leaves: Nutrient composition and physiological effects on healthy rats. J Food Sci. 78(12):H1929-934.
Crossref

 
 

Ejike CECC, Uka NKU, Nwachukwu SO (2015). Diabetes and pre-diabetes in adult Nigerians: prevalence, and correlations of blood glucose concentrations with measures of obesity. Afr. J. Biochem. Res. 9(3):55-60.
Crossref

 
 

Ezuruike UF, Prieto JM (2014). The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J. Ethnopharmacol. 155(2):857-924.
Crossref

 
 

Faisal M, Hossain AI, Rahman S, Jahan R, Rahmatullah M (2014). A preliminary report on oral glucose tolerance and antinociceptive activity tests conducted with methanol extract of Xanthosoma violaceum aerial parts. BMC Complement. Altern. Med. 14(1):335.
Crossref

 
 

Herbert OCM, Clement J, Idongesit J, Godwin E, Udeme E, Grace E (2011). Evaluation of the hypoglycemic effect of aqueous extract of Phyllanthus amarusin alloxan-induced diabetic albino rats. Int. J Pharm. Biomed. Res. 2:158-160.

 
 

International Diabetic Federation (IDF) (2016). Diabetes in Africa. Report of International Working Group on the Diabetic Foot. Available at: https://www.idf.org/webdata/docs/background_info_AFR.pdf Accessed Date: 20/04/2016.

 
 

Jennings DL (1987). Starch crops. In: CRC Handbook of plant Science in Agriculture. Volume II. Christie BR (Ed.). CRC Press, Inc. Boca Raton, Florida, USA. pp. 137-143.

 
 

Karou SD, Tchacondo T, Djikpo Tchibozo MA, Abdoul-Rahaman S, Anani K, Koudouvo K, Batawila K, Agbonon A, Simpore J, De Souza C (2011). Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 49(12):1286-1297.
Crossref

 
 

Kikumoto Y, Sugiyama H, Inoue T, Morinaga H, Takiue K, Kitagawa M, Fukuoka N, Saeki M, Maeshima Y, Wang DH, Ogino K, Masuoka N, Makino H (2010). Sensitization to alloxan-induced diabetes and pancreatic cell apoptosis in acatalasemic mice. Biochim. Biophys. Acta 1802(2):240-246.
Crossref

 
 

Lodovicia M, Giovannellia L, Pitozzia V, Bigaglia E, Bardinib G, Rotellab CM (2008). Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat. Res. 638(1-2):98-102.
Crossref

 
 

Maritim AC, Sanders RA, Watkins JB (2003). Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17(1):24-38.
Crossref

 
 

Nishanthini A, Mohan VR (2012). Antioxidant activites of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac. J. Trop. Biomed. S1701-S1706.
Crossref

 
 

Onwueme IC, Charles WB (1994). Cultivation of cocoyam. In: Tropical root and tuber crops. Production, perspectives and future prospects. FAO Plant Production and Protection Paper 126, Rome; pp. 139-161.

 
 

Styskal J, van Remmen H, Richardson A, Salmon AB (2012). Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic. Biol. Med. 52(1):46-58.
Crossref

 
 

Szkudelski T (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50(6):537-546.

 
 

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013). Markers of Oxidative Stress during Diabetes Mellitus. J. Biomark. 2013.
Crossref

 
 

Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England J. Med. 344(18):1343-1350.
Crossref

 
 

Ukpong IJ, Abasiekong BO, Etuk BA (2014). Phytochemical screening and mineral elements composition of Xanthosoma sagittifolium inflorescence. Asian J. Plant Sci. Res. 4(6):32-35.

 
 

Lenzen S (2008).Mechanisms of Alloxan- and Streptozotocin-induced diabetes. Diabetologia 51:216-226.
Crossref

 
 

Rohilla A, Ali S (2012). Alloxan Induced Diabetes: Mechanisms and Effects. Int. J. Res. Pharm. Biomed. Sci. 3(2):819-823.

 

 


APA FOLASIRE, O. F., ORIDUPA, O. A., OWOLABI, A. J., & ADEPOJU, O. T. (2016). Anti-hyperglycemic effect of cocoyam (Xanthosoma sagittifollium) corm in alloxan-induced diabetic albino rats. International Journal of Nutrition and Metabolism, 8(4), 24-29.
Chicago Oluyemisi Folake FOLASIRE, Olayinka Ayotunde ORIDUPA, Adedotun Joshua OWOLABI and Oladejo Thomas ADEPOJU. "Anti-hyperglycemic effect of cocoyam (Xanthosoma sagittifollium) corm in alloxan-induced diabetic albino rats." International Journal of Nutrition and Metabolism 8, no. 4 (2016): 24-29.
MLA Oluyemisi Folake FOLASIRE, et al. "Anti-hyperglycemic effect of cocoyam (Xanthosoma sagittifollium) corm in alloxan-induced diabetic albino rats." International Journal of Nutrition and Metabolism 8.4 (2016): 24-29.
   
DOI 10.5897/IJNAM2016.0200
URL http://academicjournals.org/journal/IJNAM/article-abstract/2E14C4659996

Subscription Form