International Journal of Plant Physiology and Biochemistry
Subscribe to IJPPB
Full Name*
Email Address*

Article Number - 14C8BC311176


Vol.5(4), pp. 58-64 , October 2013
DOI: 10.5897/IJPPB12.016
ISSN: 2141-2162



Full Length Research Paper

The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions


Hamdia M. Abd El-Samad




Botany Department, Faculty of Science, Minia University, El-Minia, Egypt.


Email: hamdia10@yahoo.com






 Accepted: 27 June 2012  Published: 31 October 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Wheat (Triticum vulgaris) plants were grown without NaCl and under salinization levels of NaCl. Salinity decreased the fresh, dry matter, water content, length and leaf area. Phytohormonal treatments with gibberellic acid (GA3) or indole-3-acetic acid (IAA) caused a marked increase in these parameters; GAwas more effective than IAA. This activation was concomitant with the increase of osmotically active solutes, soluble sugars, soluble protein and amino acids. The accumulation of calcium and magnesium in root of plant treated with GA3 and in shoot of plant treated with IAA may contributed in osmotic defense systems of wheat plants. The data also reveals that ethylene production was increased in salinity treatments. Spraying wheat plants with GA3 increased the ethylene evolution while spraying with IAA decreased this evolution under salt stress conditions. Finally, it can be concluded that the GAor IAA regulate the disturbances of metabolities and neglicated the negative effects of the accumlation of ethylene especially in plants treated with IAA under stress conditions which in turn resulted in a pronounced alleviated the drastic effects of salt.

 

Key words: GA3, IAA, ethylene, salinity, wheat.

 

Addicott FT (1982). Abscission University of California Press, Berkeley.
 
Barnett NM, NaylorAW (1966). Anino acids and protein metabolism in Bermuda grass during water stress - Plant Physiol. 41:1222-1230.
http://dx.doi.org/10.1104/pp.41.7.1222
PMid:16656387 PMCid:PMC550502
 
Bates LS, Waldren R P, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant Soil. 39 : 205-207.
http://dx.doi.org/10.1007/BF00018060
 
Bohnert HJ, Nelson DE, Jensen, RG (1995). Adaptation to environmental stresses. The Plant Cell 7:1099-1111.
http://dx.doi.org/10.2307/3870060
http://dx.doi.org/10.1105/tpc.7.7.1099
PMid:12242400 PMCid:PMC160917
 
Devitt DA, Stolzy L, Labonauskas CK (1987). Impact of potassium, sodium and salinity on the protein and free amino acids content of wheat grain - plant Soil 103:101-109.
 
El-Beltagy AS, Hall MA (1974). Effect of water stress upon endegen ous ethylene levels in Vicia Faba. New Phytol. 73:47-60.
http://dx.doi.org/10.1111/j.1469-8137.1974.tb04605.x
 
El-Beltagy AS, Hall MA (1975). Studies on endogenous levels of ethylene auxin in Vicia Faba during growth and development. New Phytol. 75: 215-224.
http://dx.doi.org/10.1111/j.1469-8137.1975.tb01389.x
 
Fales F W (1951). The assimilation and Degradation of carbohydrates of yeast cells J. Biol. Chem. 193 : 113-118.
PMid:14907695
 
Goeschi JD, Rappaport L, Pratt HK (1966). Ethylene a factor regulating the growth of pea epicotyls subgected to physical stress. Plant physiol. 41:877-884.
http://dx.doi.org/10.1104/pp.41.5.877
 
Guinn G (1976). Water deficit and ethylene evolution by yong cotton bolls. Plant Physiol. 57 : 403-405.
http://dx.doi.org/10.1104/pp.57.3.403
PMid:16659491 PMCid:PMC542034
 
Hamdia MA (1994). The effect of NaCl salinity and sodium pyruvat on growth of cucumber plant. Acta Societatis Botanicorum Poloniae 63:299-302.
http://dx.doi.org/10.5586/asbp.1994.041
 
Hamdia MA, Shaddad MAK (1996). Comparative effect of sodium carbonate, sodium sulphate and sodium chloride on the growth and related metabolic activities of pea plants. J. Plant Nutri. 19 :717-728.
http://dx.doi.org/10.1080/01904169609365155
 
Hamdia HA (1991). Physiological studies of some plants to salinity injury. Ph.D. Thesis, Minia University, Minia pp. 1-10.
 
Hamdia MA (1993). Counteraction of NaCl with NaH2 PO4 and NaNO3 on pigment, saccharide and protein contents in broad bean. Biologia Plantarum 35:531-566.
 
Hamdia MA, El-Komy HM (1998): Effect of salinity, gibberellic acid and A zospirillum inoculation on growth and nitrogen uptake of zea mays. Biological Plantarum 40:109-120.
http://dx.doi.org/10.1023/A:1000904819841
 
Hamdia M Abd El-Samad, Shaddad MA K, Barakat N (2010). The role of amino acids in improvement in salt tolerance of crop plants. Journal of Stress Physiology & Biochemistry. 6: 73:834-843.
 
Handa S, Bressan RA, Handa A K, Carpita NC, Hasegawa PM. (1983). Solutes contributing to osmotic adjustment in cultured plant cells to water stress. Plant Physiol. 73:834
http://dx.doi.org/10.1104/pp.72.3.645
http://dx.doi.org/10.1104/pp.73.3.834
 
Hoffman N., Yu L, Yang SF (1983). Changes in 1- (malonylamino cyclopropane- 1- carboxylic acid content in wilted wheat leaves in relation to their ethylene production rates and 1- amino cyclopropane - 1- carboxylic acid content. Planta 157:518-523.
http://dx.doi.org/10.1007/BF00396882
PMid:24264416
 
Hong SW, Jon JH, Kwak JM, Nam HG (1997). Indentification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physio. 113:1203-1212.
http://dx.doi.org/10.1104/pp.113.4.1203
PMid:9112773 PMCid:PMC158243
 
Itai C, Weyers JD, Hillman JR, Meidner H, Willner CM (1978). Abscissic acid and guard cells of Commelina communis L. Nature (London). 271:652-654.
http://dx.doi.org/10.1038/271652a0
 
Jones RL, Philips ID (1966). Organs gibberellin synthesis in light-grown sunflower plants. Plant Physiol. 41:1381.
http://dx.doi.org/10.1104/pp.41.8.1381
PMid:16656408 PMCid:PMC550535
 
Kim TW, Campbell A, Moriguchi T, Chul Yi H, Yang SF (1997). Auxin induces three genes encoding 1- aminocylopropane -1- carboxylate synthase in mung bean hypocotyle. Plant Physiol. 150:77-84.
http://dx.doi.org/10.1016/S0176-1617(97)80184-8
 
Levitt J (1980): Salt stresses. In. Responses of plants to environmental stresses. Vol. II. Academic press., p. 365-454.
 
Lowry OH, Roserbrough NJ, Farr A L, Randall RJ (1951). Protein Measurement with the folin phenol reagent. J. biol. Chem. 193:265-275.
PMid:14907713
 
Mc Cue KF, Hanson AD (1990). Drought and salt toleronce : Towards understanding and application. Trends Biotechnol. 8:328-362.
 
Mckeon TA, Hoffman, NE, Yang SF (1982). Effect of plant hormone pretreatments on ethylene production and synthesis of -1- aminocyclopropane -1- carboxylic acid in water stressed wheat leaves plant. Planta. 155:437-443.
http://dx.doi.org/10.1007/BF00394473
PMid:24271976
 
McMichael BL, Jordan WR, Powell RD (1972). An effect of water stress on ehtylene production by intact cotton Petioles. Plant Physiol. 49:658-660.
http://dx.doi.org/10.1104/pp.49.4.658
PMid:16658022 PMCid:PMC366026
 
Moore S, Stein W (1948). Photometric ninhydrine method for use in the chromatagoraphy of amino acid. J. Biol. Chem. 17:367-388.
 
MorganDW, He CJ, De Greef JA, De proft MP (1990). Does water deficit stress promote ethylene synthesis by intact plants? Plant Physiol. 94:1616-1624.
http://dx.doi.org/10.1104/pp.94.4.1616
PMid:16667895 PMCid:PMC1077429
 
Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology. Vol. 59: 651-68
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
PMid:18444910
 
Narayana L, Lalonde S, Saini HS (1991). Water stress-induced ethylene production in wheat. Plant Physiol. 96: 406-410.
http://dx.doi.org/10.1104/pp.96.2.406
PMid:16668200 PMCid:PMC1080784
 
Ning Bu, Xuemei Li, Yueying Li, Chunyan Ma, Lianju Ma, Chi Zhang Bu N, Li X, Li Y, Ma C, Ma L, Zhang C (2012). Effects of Na2CO3 stress on photosynthesis and antioxidative enzymes in endophyte infected and non-infected rice. Ecotoxicology and Environmental Safety 78:35-40
http://dx.doi.org/10.1016/j.ecoenv.2011.11.007
PMid:22138149
 
Parida AK, Das AB (2005). Sat tolerance and salinity effects on plants: a review, Ecotoxicology and Environmental Safety 60:324-349
http://dx.doi.org/10.1016/j.ecoenv.2004.06.010
PMid:15590011
 
Quayum HA, Panaullach GM, Haque MS (1991). A comparative study of two rice varieties, Okkali and Mi 48. Bangladesh J. Bot. 20:173-142.
 
Raz V, Fluhr R (1992). Calcium requirement for ethylene - dependent responses. American of The Plant Cell. 4: 1123-1130.
http://dx.doi.org/10.2307/3869480
http://dx.doi.org/10.1105/tpc.4.9.1123
PMid:12297671
 
Rodriguez HG, Roberts JK, Jordan WR, Drew MC (1997). Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol. 113:881-893.
PMid:12223650 PMCid:PMC158208
 
Schwarzenbach G, Biedermann W (1948). Complexons X. Alkaline earth complexese of O, O. dihydroxyazodyes. Helv. Chim. Acta. 31:678-687.
http://dx.doi.org/10.1002/hlca.19480310303
PMid:18915702
 
Shaddad MA, El-Tayeb MA (1990). Interactive effect of soil moisture content and hormonal treatments on dry matter and pigment contents of some crop plants. Acta Agronomica Hungarica. 39:49-57.
 
Shah CB, Loomis RS (1965). Ribonucleic acid and protein metabolism in sugar beet during drought. Physiol. Plant 18:240-254
http://dx.doi.org/10.1111/j.1399-3054.1965.tb06887.x
 
Skriver K, Mundy J (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 2: 503-512.
http://dx.doi.org/10.1105/tpc.2.6.503
http://dx.doi.org/10.2307/3869112
PMid:2152172 PMCid:PMC159906
 
Spickelt CM, Smirnoff N, Rateliffe RG (1992). Metabolic responses of maize roots to hyperosmotic shock. Plant Physiol. 99:856-863.
http://dx.doi.org/10.1104/pp.99.3.856
 
Tester M, Davenport R (2003). Na+olerance and Na+ transport in higher plants. Annals of Botany 91:503-527.
http://dx.doi.org/10.1093/aob/mcg058
 
Vilardell J, Marthnez- Zapater JM, Goday A, Arenas, Pages M (1994). Regulation of the rab 17 gene protein transgenic Arabido psis wild-type, ABA-deficient and ABA-sensitive mutants. Plant Mol. Biol. 24:561-569.
http://dx.doi.org/10.1007/BF00023554
PMid:8155877
 
Voetberg G, Sharp RE (1991). Growth of the maize primary root at low water potentials, III. Role of increased proline deposition in osmotic adjutment. Plant Physiol. 96:1125-1130.
http://dx.doi.org/10.1104/pp.96.4.1125
PMid:16668308 PMCid:PMC1080903
 
Walker AM, Dumbroff BE (1991). Effect of salt stress on abscisic acid and cytokinin levels in tomato. 2. Pflanzen Physiol. 101:461-470.
http://dx.doi.org/10.1016/S0044-328X(81)80085-2
 
Watson DJ, Watson MA (1953). Studies in potatoes agronomy. 1- Effect of variety seed size and spacing on growth, development and yield. J. Agar. Sci. 66:241-249.
 
Weimberg R, Lerner HR, Poljakoff-Mayber A (1984). Changes in growth and water. soluble solute concentrations in sorghum bicolor stressed with sodium and potassium salts. Physiol. Plant 62:472-480.
http://dx.doi.org/10.1111/j.1399-3054.1984.tb04605.x
 
Woods JT, Mellon MG (1985). Chlorostannous reduced molybdophosphoric blue colour method in sulphuric acid systern. In : Jockson, M. (ed): Soil Chemical Analysis. Prentice-Hall International, London. pp. 141-144.
 
Wyn Jones RG (1981). Solt tolerance. In CB Johnson, ed, physiological processes limiting plant productivity. Butterworths, London, pp. 271-292.
http://dx.doi.org/10.1016/B978-0-408-10649-8.50019-8
 
Yang SF, Hoffman NE (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35:155-189.
http://dx.doi.org/10.1146/annurev.arplant.35.1.155
http://dx.doi.org/10.1146/annurev.pp.35.060184.001103
 
Yoshii H, Imaseki H(1982). Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1- aminocyclopropane -1- carboxylate synthase by ethylene. Plant Cell Physiol. 23:639-649.
 
Zimmermann U. (1978). Physics of turgor and osmoregulation. Annu. Rev. Plant physiol. 29:121-148.
http://dx.doi.org/10.1146/annurev.pp.29.060178.001005

 


APA (2013). The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions. International Journal of Plant Physiology and Biochemistry, 5(4), 58-64.
Chicago Hamdia M. Abd El-Samad. "The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions." International Journal of Plant Physiology and Biochemistry 5, no. 4 (2013): 58-64.
MLA Hamdia M. Abd El-Samad. "The physiological response of wheat plants to exogenous application of gibberellic acid (GA3) or indole-3-acetic acid (IAA) with endogenous ethylene under salt stress conditions." International Journal of Plant Physiology and Biochemistry 5.4 (2013): 58-64.
   
DOI 10.5897/IJPPB12.016
URL http://academicjournals.org/journal/IJPPB/article-abstract/14C8BC311176

Subscription Form