International Journal of Plant Physiology and Biochemistry
Subscribe to IJPPB
Full Name*
Email Address*

Article Number - D265EAB65969


Vol.9(4), pp. 36-42 , August 2017
DOI: 10.5897/IJPPB2016.0245
ISSN: 2141-2162



Full Length Research Paper

Effect of jasmonic acid on some biochemical and physiological parameters in salt-stressed Brassica napus seedlings



Harpreet Kaur
  • Harpreet Kaur
  • Department of Botany, Punjabi University, Patiala, India.
  • Google Scholar
Geetika Sirhindi
  • Geetika Sirhindi
  • Department of Botany, Punjabi University, Patiala, India.
  • Google Scholar
Poonam Sharma
  • Poonam Sharma
  • Department of Botany, Punjabi University, Patiala, India.
  • Google Scholar







 Received: 22 January 2016  Accepted: 22 March 2017  Published: 31 August 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The present study demonstrated the effect of jasmonic acid (JA) on pigments and vitamins involved in photosynthesis or other metabolic activities during salt stress in Brassica napus L. Exposure to different concentrations of NaCl decreased pigments such as total chlorophyll, β-carotene, and lycopene to significant low levels but interestingly salinity increased total protein of B. napus L. seedlings, which was further ameliorated via JA supplementation. Importantly, JA alone and in combination with different concentrations of NaCl enhanced growth, pigments, vitamins over control and salt-alone treatment groups. The observations suggested that JA induced salinity tolerance in B. napus L. seedlings by improving the biosynthetic level of various pigments and vitamins.

 

Key words: Jasmonic acid, Brassica napus, Chlorophyll, Carotenoides, β –carotene.

Abbreviation:

JA, Jasmonic acid; ROS, reactive oxygen species; TFs, trascription factors; PAP, production of anthocyanin pigmentation; EGL 3, enhancer of glabra 3; EL 3, extracellular loop; MYB 75, myeloblastosis 75; TTS, transparent testa; DAS, day after sowing; JAZs, jasmonate zim domain proteins.


Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.Plant. Physiol. 24:1-15.
Crossref

 

Bayfield RF, Cole ER (1980). Colorimetric estimation of vitamin A with trichloroacetic acid. Methods Enzymol. 67:189-195.
Crossref

 
 

Bor M, Ozdemir F, Turkan I (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant. Sci.164:77-84.
Crossref

 
 

Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B, (2002). Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) Plants. Physiol. Plant.116:192-199.
Crossref

 
 

Chena H, Daniel A, Jonesb C, Gregg A, Howea B (2006). Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Letters. 580: 2540–2546.
Crossref

 
 

Chinoy JJ, Singh YD, Gurumurthi K (1976). Colorimetric determination of ascorbic acid turnover in plants. J. Plant. Physiol. 22:122-130.

 
 

De Geyter N, Gholami A, Goormachtig S, Goossens A (2012). Transcriptional machineries in jasmonate elicited plant secondary metabolism. Trends. Plant. Sci. 17:349 -359.
Crossref

 
 

Jouyban Z (2012). The effects of salt stress on plant growth. Tech. J. Eng. Appl. Sci. 1:107-100.

 
 

Le Rudulier D (2005). Osmoregulation in rhizobia: the key role of compatible solutes. Grain Legume 42:18-19.

 
 

Lichtenthaler HK (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes (L Packer and R Douce, eds), Methods in Enzymol. 148:350-382, Academic Press, New York.

 
 

Lowry H, Rosenbrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem.193: 265.

 
 

Memelink J (2009). Regulation of gene expression by jasmonate hormones.Phytochem.70: 1560-1570.
Crossref

 
 

Michael M, Neff J, Chory (1998). Genetic Interactions between Phytochrome A, Phytochrome B, and Cryptochrome 1 during Arabidopsis Development. Plant. Physiol.118:27-35.
Crossref

 
 

Munns R (2005). Salinity stress and its impact. In: Blum, A. (ed.) Plant Stress. 

View.

 
 

Nagata M, Yamashita I (1992). Nippon Shokuhin Kogyo Gakkaishi. 39:925.
Crossref

 
 

Qi T, Song S, Ren Q (2011). The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell. 23:1795-1814.
Crossref

 
 

Qi T, Song S, Ren Q (2011). The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795-1814.
Crossref

 
 

Rakwl R, Komatsu S (2001). Jasmonic acid induces necrosis drastic decrease in Ribulose 1, 5-biphosphate carboxylase / oxygenase in rice seedlings under light involves reactive oxygen species. Plant Physiol. 158:679-688.
Crossref

 
 

Raza SH, Athar HR, Ashraf M, Hameed A (2007). Glycine betaine induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ. Exp. Bot. 60:368-376.
Crossref

 
 

Rosenberg HR (1992). Chemistry and physiology of vitamins: Interscience publishers Inc, New York pp. 452-453.

 
 

Rymen B, Sugimoto K (2012). Tuning growth to the environmental demands. Curr. Opin. Plant. Biol.15:683-690.
Crossref

 
 

Sairam RK, Srivastava G C (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162:897-904.
Crossref

 
 

Singha S, Choudhuri MA (1990). Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochem. Physiol. Pflanz. 186:69-74.
Crossref

 
 

Taffouo VD, Nouck AH, Dibong SD, Amougou A (2010). Effect of salinity stress on seedling growth, numeral nutrients, and total chlorophyll of some tomato (Lycopersicum esculentum L.) cutivars. Afr. J. Biotechnol. 9(33):5366-5372.

 
 

Tsuchiya T, Ohta H, Okawa K (1999). Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Nat. Acad. Sci. USA. 96(26):15362-15367.
Crossref

 
 

Verma S, Mishra SN (2005). Putrescine alleviation of growth in Brassica napus by inducing antioxidant defense system. Plant Physiol. 162:669-677.
Crossref

 
 

Wasternack C, Hause B (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development: an update to the 2007 Review in Annals of Botany. 111:1021-1058. 
Crossref

 
 

Zhang Y, Turner JG (2008). Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE. 3(11): e3699. doi:10.1371/journal.pone.0003699
Crossref

 

 


APA Kaur, H., Sirhindi, G., & Sharma, P. (2017). Effect of jasmonic acid on some biochemical and physiological parameters in salt-stressed Brassica napus seedlings. International Journal of Plant Physiology and Biochemistry, 9(4), 36-42.
Chicago Harpreet Kaur, Geetika Sirhindi and Poonam Sharma. "Effect of jasmonic acid on some biochemical and physiological parameters in salt-stressed Brassica napus seedlings." International Journal of Plant Physiology and Biochemistry 9, no. 4 (2017): 36-42.
MLA Harpreet Kaur, Geetika Sirhindi and Poonam Sharma. "Effect of jasmonic acid on some biochemical and physiological parameters in salt-stressed Brassica napus seedlings." International Journal of Plant Physiology and Biochemistry 9.4 (2017): 36-42.
   
DOI 10.5897/IJPPB2016.0245
URL http://academicjournals.org/journal/IJPPB/article-abstract/D265EAB65969

Subscription Form