International Journal of Plant Physiology and Biochemistry
Subscribe to IJPPB
Full Name*
Email Address*

Article Number - E5201EB60025


Vol.8(2), pp. 7-16 , August 2016
DOI: 10.5897/IJPPB2016.0247
ISSN: 2141-2162



Full Length Research Paper

Influence of the position of flowers buds on the tree on somatic embryogenesis of cocoa (Theobroma cacao L.)



Rodrigue Pouengue Boutchouang*
  • Rodrigue Pouengue Boutchouang*
  • Department of Biochemistry, Faculty of Sciences, University of Yaounde I, P. O. Box 812, Yaounde-Cameroon.
  • Google Scholar
Olive Flore Zebaze Akitio
  • Olive Flore Zebaze Akitio
  • Laboratory of Biochemistry and Plant Physiology, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, P. O. Box 47, Yaounde- Cameroon.
  • Google Scholar
Audrey Germaine Ngouambe Tchouatcheu
  • Audrey Germaine Ngouambe Tchouatcheu
  • Laboratory of Biochemistry and Plant Physiology, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, P. O. Box 47, Yaounde- Cameroon.
  • Google Scholar
Nicolas Niemenak
  • Nicolas Niemenak
  • Laboratory of Biochemistry and Plant Physiology, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, P. O. Box 47, Yaounde- Cameroon.
  • Google Scholar







 Received: 22 February 2016  Accepted: 26 May 2016  Published: 31 August 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The recalcitrance of Theobroma cacao L. to somatic embryogenesis, due to non-adapted physiological and metabolical responses to environmental stress, limits its propagation. The present work aims to ameliorate somatic embryogenesis in T. cacao throughout a physiological approach. For this purpose, the influence of the position of flowers buds used as explants was evaluated. Flowers buds were collected from different parts of the tree: orthotropic main stem (OS), primary plagiotropic fan branch (FI) and secondary plagiotropic fan branch (FII). Evolution of some biochemical parameters such as phenolic compounds, soluble sugars, proteins contents and peroxidase activity was followed at different steps of somatic embryogenesis, considering the origin of the explants used. Results obtained show that callogenesis is induced on all explants independently of their origin, with an 80% average frequency. Embryogenesis frequencies were ca 2 fold higher in staminodes-derived calluses from FII and FI than OS. Meanwhile petals of FII do not differentiate embryos. Biochemical analysis shows that the content of phenol is low in calluses during somatic embryo establishment. Explants from FII present the lowest values (after 49th days of culture). Sugars content decrease during callogenesis. When embryos are established the sugars content decrease in explants from OS. During the same period, proteins’ and phenols contents increased in staminodes-derived calluses from all origin; while there was decrease in petals from FI and FII. Buds from fan branch are suitable for somatic embryogenesis process and this capacity correlate with peroxidase activity which decrease during embryos dedifferentiation phase.

Key words: Theobroma cacao L., somatic embryogenesis, proteins, phenols compounds, soluble sugars, peroxidase activity, microclimate.

Alemano L, Ramos T, Gargadenec A, Andary C, Ferriere N (2003). Localization and identification of phenolic compounds in Theobroma cacao L. somatic embryogenesis. Ann. Bot. 92:613-623.
Crossref

 

Ana BM, Yolanda C, Hilario G. Piedad G, Oscar H, Luisa M, Ana D, Nieves V (1997). Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant. Sci. 154:143-151.

 

Babu S, Shareef M, Shetty P, Shetty T (2002). HPLC method for amino acids profile in biological fluids and inborn metabolic disorders of aminoacidopathies. Indian. J. Clin. Biochem. 17(2):7-26.
Crossref

 

Blanc G, Michaux- Ferriere N, Teison C, Carron MP (1999). Effect of carbohydrate addition on the induction of somatic embryogenesis in Hevea Brasiliensis. Plant Cell Tissue Organ Cult. 59:103-112.
Crossref

 

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254.
Crossref

 

Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter (2013). The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol. Planta. 149:273-285.
Crossref

 

Cangahuala-Innocente GC, Steiner N, Maldonado SB, Guerra MP (2009). Patterns of protein and carbohydrates accumulation during somatic embryogenesis of Acca sellowiana. Pesq. agropec.
Crossref

 

Doak KD, Miller PR (1968). Influence of mineral nutrition on pigmentation in sorghum. Agro. J. 60:430-432.
Crossref

 

Driver JA, Kuniyuki AH (1984). In vitro propagation of paradox walnut root stock. Hort. Sci. 19:507-509.

 

El Hadrami I (1995). L'embryogenèse somatique chez Phoenix dactylifera L.: quelques facteurs limitant et marqueurs biochimiques. Thèse de Doctorat, d'Etat Université Cadi Ayyad, Faculté des Sciences-Semlalia, Marrakech, P 227.

 

Erdelsky´ K, and Fricˇ F (1979). Practical and analytical methods in plant physiology. SPN, Bratislava.

 

Fehér A, Pasternak TP, Dudits D (2003). Transition of somatic plant cells to embryogenic state. Plant Cell Tissue Org. Cult. 74:201-228.

 

Fotso, Donfagsiteli TN, Sanonne, Omokolo ND (2007). Effet des phytohormones exogènes sur l'évolution de certains paramètres biochimiques au cours de l'embryogenèse de Ricinodendron heudolotii. Baill. Fruits 62:302-315.

 

Francis FJ, Atwood WM (1961). The effect of fertilizer treatment on the pigment content of cranberries. Proc. Am. Hort. Sci. 77:351-358.

 

Gibson SI (2005). Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8:93-102.
Crossref

 

Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003). ADP-Glucose pyrophosphorylase is activated by posttranslational redox modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 133:838-849.
Crossref

 

Iraqi D, Tremblay FM (2001). Analysis of carbohydrate metabolism enzymes and cellular contents of sugar and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J. Exp. Bot. 52:2301-2311.
Crossref

 

Jiménez VM (2001). Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev. bras. Fisiol. Vegetal 13:196-223.
Crossref

 

Komamine A, Murata N, Nomura K (2005). Mechanisms of somatic embryogenesis in carrot suspension cultures – morphology, physiology, biochemistry, and molecular biology. In vitro Cell. Dev. Biol. Plant 41:6-10.
Crossref

 

Lass RA (1999). Cacao growing and harvesting practices. In: Knight, I. (Ed.), Chocolate and Cocoa Health and Nutrition. Blackwell Science Ltd., Oxford, London, pp. 11-42.

 

Li Z, Traore A, Maximova S, Guiltinan MJ (1998). Somatic embryogenesis and plant regeneration from floral explant of cacao (Theobroma cacao L.) using thidiazuron. In vitro Cell. Dev. Biol. Plant 34:293-299.
Crossref

 

Lulsdorf MM, Tautorus TE, Kikcio SI, Dunstan DI (1992). Growth parameter of somatic embryogenic suspension culture of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariana Mill.). Plant Sci. 82:227-234.
Crossref

 

Macheix JJ, Fleuriet A, Billot J (1990). Fruit Phenolics. Florida: CRC press. Inc. Boca Ranton, P 378.

 

Maximova SN (2008). Field performance of Theobroma cacao L. plants propagated via somatic embryogenesis. In vitro Cell. Dev. Biol. Plant 44:487-493.
Crossref

 

Maximova SN, Alemano L, Young A, Ferriere N, Traore A, Guiltinan MJ (2002). Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell. Dev. Biol. Plant 38:252-259.
Crossref

 

Minyaka E (2009). Métabolisme du soufre et embryogenèse somatique chez Theobroma cacao L. (Malvaceae). Thèse de Doctorat/Ph.D, Université de Yaoundé I, Université de Cocody/Abidjan, 132 p.

 

Minyaka E, Niemenak N, Fotso, Sangare A, Omokolo ND (2008). Effect of MgSO4 and K2SO4 on somatic embryo differentiation of Theobroma cacao L. Plant Cell Tissue Organ Cult. 94:149-160. Minyaka E, Niemenak N, Issali EA, Sangare A, Omokolo ND (2010). Sulphur depletion altered somatic embryogenesis in Theobroma cacao L. Biochemical difference related to sulphur metabolism between embryogenic and non-embryogenic calli. Afr. J. Biotechnol. 9(35):5665-5675.

 

Niemenak N (1998). Recherche des marqueurs biochimiques et modification histologique au cours de la callogenèse et de l'embryogenèse somatique in vitro chez Theobroma cacao L. Thèse de doctorat 3ème cycle, Université de Yaoundé, P 138.

 

Niemenak N, Saare-Surminski K, Rohsius C, Omokolo ND, Lieberei R (2008). Regeneration of somatic embryo in Theobroma cacao L. in Temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep. 27:667-676.
Crossref

 

Noah MA, Niemenak N, Sunderhaus S, Haase C, Omokolo ND, Winkelmann T, Braun HP (2013). Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L. J. Prot. 78:123-133.
Crossref

 

Olah R, Zok A, Pedryc S, Howard, Kovacs LG (2009). Somatic embryogenesis in a broad spectrum of grapes genotypes. Sci. Hort. 120:134-137.
Crossref

 

Piccaglia R, Marotti M, Baldoni G (2002). Factors influencing anthocyanin content in red cabbage (Brassica oleracea var capitata L f rubra (L) Thell). J. Sci. Food Agric. 82(13):1504-1509.
Crossref

 

Roubelakis-Angelakis KA, Kliewer WM (1986). Effect of exogenous factors on anthocyanins and total phenolics in grape berries. Am. J. Enol Vitic. 37:275-280.

 

Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997). A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124(10):2049-2062.

 

Singleton VL, Rossi JA (1965). Colorimeter of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticulture 16:144-158.

 

Wang SY, Zheng W (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49:4977- 4982.
Crossref

 

Wood GAR, Lass RA (1985). Cacao. Longman Scientific and Technical (ed, England), P 620.

 

Zouine L, El Hadrami I (2004). Somatic embryogenesis in Phoenix dactylifera L.: effect of exogenous supply of sucrose on Proteins, Sugars and Peroxidases activities during the Embryogenic Cell Suspension Culture. Biotechnol. 3(2):114-118.
Crossref

 


APA Boutchouang, R. P., Akitio, O. F. Z., Tchouatcheu, A. G. N., & Niemenak, N. (2016). Influence of the position of flowers buds on the tree on somatic embryogenesis of cocoa (Theobroma cacao L.). International Journal of Plant Physiology and Biochemistry, 8(2), 7-16.
Chicago Rodrigue Pouengue Boutchouang, Olive Flore Zebaze Akitio, Audrey Germaine Ngouambe Tchouatcheu, and Nicolas Niemenak. "Influence of the position of flowers buds on the tree on somatic embryogenesis of cocoa (Theobroma cacao L.)." International Journal of Plant Physiology and Biochemistry 8, no. 2 (2016): 7-16.
MLA Rodrigue Pouengue Boutchouang, et al. "Influence of the position of flowers buds on the tree on somatic embryogenesis of cocoa (Theobroma cacao L.)." International Journal of Plant Physiology and Biochemistry 8.2 (2016): 7-16.
   
DOI 10.5897/IJPPB2016.0247
URL http://academicjournals.org/journal/IJPPB/article-abstract/E5201EB60025

Subscription Form