International Journal of Physical Sciences
Subscribe to IJPS
Full Name*
Email Address*

Article Number - 1B3EE9466949


Vol.12(23), pp. 322-328 , December 2017
https://doi.org/10.5897/IJPS2017.4687
ISSN: 1992-1950


 Total Views: 0
 Downloaded: 0

Full Length Research Paper

Microstructure and mechanical properties correlation for the steel: A comparative methodology of educational research for physics and mechanical engineering trainings



M. Siqueiros-Hernández
  • M. Siqueiros-Hernández
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
F. J. Ramírez-Arias
  • F. J. Ramírez-Arias
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
J. M. Colores-Vargas
  • J. M. Colores-Vargas
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
M. Avila-Puc
  • M. Avila-Puc
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
A. Delgado-Hernández
  • A. Delgado-Hernández
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
F. Mesa
  • F. Mesa
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
B. González-Vizcarra
  • B. González-Vizcarra
  • School of Technology and Engineering Sciences, Autonomous University of Baja California, 21500 Tijuana, Baja California, Mexico.
  • Google Scholar
L. Cruz-Vazquez
  • L. Cruz-Vazquez
  • Department of Processes, Technological University of Tijuana (UTT). 22253 Tijuana, Baja California, México.
  • Google Scholar







 Received: 07 September 2017  Accepted: 31 October 2017  Published: 16 December 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


An academic methodology based for experimental evaluation of materials treatment is presented. The study is centered in an educational research emphasis about microstructure evaluation and heat treatments in steels samples machined according to ASTM E8 specifications. The uses of metallographic techniques and hardness/tensile tests for analyzing experimental variations due to structural changes are included. Different thermal treatments were applied on AISI-SAE 1018 steel specimens by raising the temperature until it reached the austenization state. Images were obtained with a Nikon NIS Elements computer programming, in order to observe the microstructure and identify the phases involved in each of the thermal treatments. For the hardness analysis, the round indenter of 1/16 in of Tungsten Carbide with a preload of 100 kg was used. A grain diameter of 3 to 4 µm was observed in both annealed and normalized sample, so it is assumed that the cold rolled or reference sample had a normalized condition. Both 41 and 67% in elongation and area reduction percentages, respectively, in the normalized samples were observed. The results allow identifying the correlation between microstructures and mechanical properties, providing an engineering educational approach for metallographic analysis and heat treatment schemes focused on the grain size interpretation, resilience and stress-strain curves. The described methodology provides an academic reference for the didactic evaluation of the main techniques associated with the treatment of materials for physics and mechanical engineering training.

Key words: Heat treatments, microstructure, tensile test, hardness, educational research.

Akkurt AS, Akgün OV, Yakupoglu N (1996). The effect of post-heat treatment of laser surface melted AISI 1018 steel. J. Mater. Sci. 31(18):4907-4911.
Crossref

 

ASTM E112-13 (2013). Standard test methods for determining average grain size. ASTM International. West Conshohocken. PA. 
Crossref

 
 

ASTM E1140-12b (2012). Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness. ASTM International. West Conshohocken. PA. 
Crossref

 
 

ASTM E18-17e1 (2017). Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials. ASTM International, West Conshohocken. PA. https://doi.org/10.1520/E0018-17E01
Crossref

 
 

ASTM E3-11 (2017). Standard Guide for Preparation of Metallographic Specimens. ASTM International, West Conshohocken. PA. 
Crossref

 
 

ASTM E8/E8M-16a (2016). Standard test methods for tension testing of metallic materials. ASTM International. West Conshohocken. PA. 
Crossref

 
 

ASM International Handbook Committee (2014). ASM Handbook: Heat treating -Volume 4D: Head Treating of Irons and Steels. ASM International.

 
 

Atman CJ, Adams RS, Cardella ME, Turns J, Mosborg S, Saleem J (2007). Engineering design processes: A comparison of students and expert practitioners. J. Eng. Educ. 96(4):359-379.
Crossref

 
 

Calik A (2009). Effect of cooling rate on Hardness and Micro structure of AISI 1020, AISI 1040 and AISI 1060 steels. Int. J. Phys. Sci. 4(9):514-518.

 
 

Castillo FJ, Marin J (1985). Metallographic study of formed metallic uranium. Nucleotecnica 4(8):19-27.

 
 

Clough RB, Webb SC, Armstrong RW (2003). Dynamic hardness measurements using a dropped ball: with application to 1018 steel. Mater. Sci. Eng. A. 360(1):396-407.
Crossref

 
 

Cwjna J, Roskosz S (2001). Effect of microstructure on properties of sintered carbides. Mater. Charact. 46(2-3):197-201.
Crossref

 
 

Daramola OO, Adewuyi BO, Oladele IO (2010). Effects of heat treatment on the mechanical properties of rolled medium carbon steel. J. Miner. Mater. Charact. Eng. 9(08):693-708.
Crossref

 
 

Daunton C, Kothari S. Smith L, Steele D (2012). A history of materials and practices for wound management. Wound Pract. Res. J. Austr. Wound Manag. Assoc. 20(4):174-176.

 
 

De-Cooman BC, Speer JG (2011). Fundamentals of steel product physical metallurgy. AIST. Warrendale. PA.

 
 

Dieter GE, Bacon DJ (1986). Mechanical metallurgy –Vol:03. New York: McGraw-Hill.

 
 

DIN-EN-ISO-6508 (2006). Metallic Materials–Rockwell Hardness Test. ISO. Berlin-Germany.

 
 

Dobrzański LA, Tański T, Čížek L (2007). Heat treatment impact on the structure of die-cast magnesium alloys. J. Achiev. Mater. Manuf. Eng. 20(1-2):431-434.

 
 

Doong JL, Tan YH (1989). Effect of laser surface alloying chromium onto AISI 1018 steel on the fatigue crack growth rate. Int. J. Fatigue 11(4):239-247.
Crossref

 
 

Dym CL, Agogino AM, Eris O, Frey DD, Leifer LJ (2005). Engineering Design Thinking, Teaching, and Learning. Int. J. Eng. Educ. 94(1):103-120.
Crossref

 
 

Dutson AJ, Todd RH, Magleby SP, Sorensen CD (1997). A Review of Literature on Teaching Engineering Design Through Project‐Oriented Capstone Courses. Int. J. Eng. Educ. 86(1):17-28.
Crossref

 
 

Fadare DA, Fadara TG, Akanbi OY (2011). Effect of heat treatment on mechanical properties and microstructure of NST 37-2 steel. J. Miner. Mater. Charact. Eng. 10(03):299-308.
Crossref

 
 

Frade-Drumond AL, Abdalla AJ, de Moura-Neto C, Manabu-Hashimoto T, de Oliveira-Hein LR (2014). Mechanical characterization of a steel AISI 43100 submitted to different routes of heat treatments. Mater. Sci. Forum. Trans. Tech. Publications 802(1):373-376.
Crossref

 
 

González AG, Mu-oz CA, Arnaldo GJ (2015). Metallographic Study on Alloy Zircaloy-4 of Nuclear Use. Procedia Materials Sci. 8(1):494-501.
Crossref

 
 

Harry C (1995). Heat Treaters Guide: Practice and Procedures for Irons and Steels. ASM International. 2Ed.

 
 

He P, Jia D, Lin T, Wang M, Zhou Y (2010). Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 36(4):1447-1453.
Crossref

 
 

Ikpeseni SC, Onyekpe BO, Momoh IM (2015). Effect of tempering on the microstructure and mechanical properties of austenitic dual phase steel. Int. J. Phys. Sci. 10(16):490-497.

 
 

Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997). Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl. Microbiol. Biotechnol. 48(1):11-17.
Crossref

 
 

Kuśtrowski P, Sułkowska D, Chmielarz L, Rafalska-Łasocha A, Dudek B. Dziembaj R (2005). Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg–Al oxides in the aldol condensation of acetone. Microporous Mesoporous Mater. 78(1):11-22.
Crossref

 
 

Mills JE, Treagust DF (2003). Engineering education-Is problem-based or project-based learning the answer. Australas. J. Eng. Educ. 3(2):2-16.

 
 

Noguez ME, Balderas JE, Robert T, Ramirez J, Salas G (2002). Propiedades mecánicas de aceros de bajo carbono con esta-o y diferentes contenidos de elementos residuales. Rev. Cienc. Ing. 23(3):31-35.

 
 

Parkinson A (1995). Robust mechanical design using engineering models. J. Vib. Acoust. 117(B):48-54.

 
 

Schaefer D, Panchal JH. Choi SK, Mistee F (2008). Strategic Design of Engineering Education for the flat world. Int. J. Eng. Ed. 24(2):274- 282.

 
 

Selfridge AR (1985). Approximate material properties in isotropic materials. IEEE Trans. Sonics Ultrason. 32(3):381-394.
Crossref

 
 

Stobrawa JP, Rdzawski ZM, Głuchowski W (2007). Structure and properties of dispersion hardened submicron grained copper. J. Achiev. Mater. Manuf. Eng. 20(1):195-198.

 
 

Suzuki A, Mcevily AJ (1979). Microstructural effects on fatigue crack growth in a low carbon steel. Metall. Mater. Trans. A. 10(4):475-481.
Crossref

 
 

Szykman S, Sriram RD, Bochenek C, Racz JW, Senfaute J (2000). Design Repositories: Engineering Design's New Knowledge Base. IEEE Intell. Syst. Appl. 15(3):48-55.
Crossref

 
 

Topçu O, Übeyli M (2009). On the microstructural and mechanical characterizations of a low carbon and micro-alloyed steel. Mater. Des. 30(8):3274-3278.
Crossref

 
 

Vander-Voort GF, Lampman SR, Sander BR, Anton GJ, Polakowski C, Kinson J, Scott-Jr WW (2004). ASM handbook. Metallography and Microstructures 9:44073-0002.

 
 

Whitesides GM, Wong AP (2006). The intersection of biology and materials science. MRS Bull. 31(1):19-27.
Crossref

 
 

Williams JC, Starke EA (2003). Progress in structural materials for aerospace systems. Acta Mater. 51(19):5775-5799.
Crossref

 
 

Wojnar L (2016). Application of ASTM standards in quantitative microstructure evaluation. Czasopismo Techniczne. Mechanika Zeszyt 4-M 2016. pp. 41-46.

 

 


APA González-Vizcarra, B., Mesa, F., Delgado-Hernández, A., Avila-Puc, M., Colores-Vargas, J. M., Ramírez-Arias, F. J., Siqueiros-Hernández, M., & Cruz-Vazquez, L. (2017). Microstructure and mechanical properties correlation for the steel: A comparative methodology of educational research for physics and mechanical engineering trainings. International Journal of Physical Sciences, 12(23), 322-328.
Chicago B. Gonz&alez-Vizcarra, F. Mesa, A. Delgado-Hern&andez, M. Avila-Puc, J. M. Colores-Vargas, F. J. Ram&irez-Arias, M. Siqueiros-Hern&andez and L. Cruz-Vazquez. "Microstructure and mechanical properties correlation for the steel: A comparative methodology of educational research for physics and mechanical engineering trainings." International Journal of Physical Sciences 12, no. 23 (2017): 322-328.
MLA B. Gonzaacute;lez-Vizcarra, et al. "Microstructure and mechanical properties correlation for the steel: A comparative methodology of educational research for physics and mechanical engineering trainings." International Journal of Physical Sciences 12.23 (2017): 322-328.
   
DOI https://doi.org/10.5897/IJPS2017.4687
URL http://academicjournals.org/journal/IJPS/article-abstract/1B3EE9466949

Subscription Form