International Journal of Physical Sciences
Subscribe to IJPS
Full Name*
Email Address*

Article Number - 6FA272545291


Vol.9(4), pp. 48-53 , February 2014
DOI: 10.5897/IJPS2013.4025
ISSN: 1992-1950



Full Length Research Paper

A phenomenological model for photon mass generation in vacuo



Masroor H. S. Bukhari
  • Masroor H. S. Bukhari
  • Department of Physics, University of Houston, Houston, TX77204, USA.
  • Google Scholar







 Accepted: 17 February 2014  Published: 28 February 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


A phenomenological model is presented here arguing that photon mass is an induced effect rendered in the form of vacuum potential arising from vacuum natural modes. An elementary vacuum potential is defined as a function of vacuum zero-point fields, which yields an expression for effective photon mass generation. A Lagrangian is constructed for this model which incorporates photons with effective mass in vacuo. It is suggested that photons may acquire or present an effective mass while interactions with vacuum or other fields but they do not have an intrinsic rest mass. The photon mass emerges as a dynamical variable which depends on the coupling strength of electromagnetic fields to the vacuum natural modes and on the value of vector potential.

Key words: Photon mass, Maxwell-Proca equations, vacuum potentials, Higgs potential.

Abbreviation:

PACS numbers: 11, 11.15.-q, 12.10.Dm.


 

Lakes RS (1998). "Experimental limits on the photon mass and cosmic magnetic vector potential" Phys. Rev. Lett. 80:1826-1829.
http://dx.doi.org/10.1103/PhysRevLett.80.1826
 
Tu LC, Luo J, Gillies GT (2005). "The mass of the photon", Rep. Prog. Phys. 68:77-130.
http://dx.doi.org/10.1088/0034-4885/68/1/R02
 
In Particle Data Book (2012). (Particle Data Group, Lawrence Berkeley National Laboratory, 2012); J. Beringer et al., "Particle Data Book", Phys. Rev. D. 86:1001-2526.
 
Aitchison IJR, Hey AJG (1982). In Gauge Theories in Particle Physics (Adam Hilger, Bristol) P.194.
 
Casimir HBG (1948). "On the attraction between two perfectly conducting plates", Proc. K. Ned. Akad. Wet. 51:793; K. A. Milton, In The Casimir Effect (World Scientific, NJ, 2001).
 
Mostepenenko VM, Trunov NN (1997). In The Casimir Effect and its Applications (Clarendon Press, Oxford, 1997), P. W. Milloni, In The Quantum Vacuum (Academic Press,1994).
 
Dodonov VV (2010). "Current status of the dynamical casimir effect", Phys. Scr. 82:038105-038107.
http://dx.doi.org/10.1088/0031-8949/82/03/038105
 
Dodonov VV (1996). "Resonance excitation and cooling in electromagnetic modes in a cavity with an oscillating wall ", Phys. Lett. A. 213:219-225.
http://dx.doi.org/10.1016/0375-9601(96)00120-X
 
Schwinger J (1992). "Casimir energy for dielectrics", Proc. Nat. Acad. Sci. 89:4091-4093.
http://dx.doi.org/10.1073/pnas.89.23.11118
http://dx.doi.org/10.1073/pnas.89.9.4091
PMid:11607291 PMCid:PMC525638
 
Planck M (1911). Eine neue Strahlungshypothese", Verh. Deutsch. Phys. Ges. 13:138-148.
 
Itzykson C, Zuber JC (1985). In Quantum Field Theory. McGraw-Hill, NY. Chapter 1. Guralnik G, Hagen CR, Kibble TWB (1969). In Advances in High-Energy Physics (Ed. By R. Cool and R. E. Marshak), Wiley, New York, 1969; R. N. Mahapatra, In Unification and Supersymmetry, Springer-Verlag, New York, 1986,1st Ed. Frampton PH (2000). In Gauge Field Theories. John Wiley, N.Y, 2000.
 
Servin M, Brodin G (2003). Resonant interaction between gravitational waves, electromagnetic waves and plasma flows, Phys. Rev. D 68:44017.
http://dx.doi.org/10.1103/PhysRevD.68.044017
 
Lai D, Ho WCG (1932). astro-ph/0211315 v2, Landau L. "Zur Theorie der Energieubertragung. II"., Phys. Z. Soviet Union 2(46); C. Zener, "Non-adiabatic crossing of energy levels", Proc. R. Soc. London, Ser. A. 137:696-702.
 
Wolfenstein L (1978). "Neutrino oscillations in matter", Phys. Rev. D17:2369-2374. Goldstein H (2002). In Classical Mechanics. Addison-Wesley, NY, 2002. Kh. Akhmedov E (1988). "Neutrino oscillations in inhomogeneous matter", Yad. Fiz. 47:475 (1988) [Sov. J. Nucl. Phys. 47:301. Masood SS (1991). "Photon mass in the classical limit of finite temperature and density QED", Phys. Rev. D44:3943-3947.
 
Weldon HA (1982). "Covariant Calculations at Finite Temperature: the Relativistic Plasma'', Phys. Rev. D26:1394-1396.
http://dx.doi.org/10.1103/PhysRevD.26.1394
 
Mueller H (2010). A precision measurement of the gravitational redshift by the interference of matter waves", P. Achim and S. Chu, Nature 463:926-928.
http://dx.doi.org/10.1038/nature08776
PMid:20164925
 
Misner CW, Thorn K, Wheeler JA (1973). In Gravitation. Freeman. pp. 1103-1105.

 


APA (2014). A phenomenological model for photon mass generation in vacuo. International Journal of Physical Sciences, 9(4), 48-53.
Chicago Masroor H. S. Bukhari. "A phenomenological model for photon mass generation in vacuo." International Journal of Physical Sciences 9, no. 4 (2014): 48-53.
MLA Masroor H. S. Bukhari. "A phenomenological model for photon mass generation in vacuo." International Journal of Physical Sciences 9.4 (2014): 48-53.
   
DOI 10.5897/IJPS2013.4025
URL http://academicjournals.org/journal/IJPS/article-abstract/6FA272545291

Subscription Form