# Full Length Research Paper

ISSN 1992 - 1950 ©2011 Academic Journals

# Monte Carlo and density functional theory (DFT) investigation of boron-nitride nano cones in different solvents

M. Monajjemi<sup>1\*</sup>, N. Hooshmand<sup>2</sup> and F. Mollamin<sup>3</sup>

<sup>1</sup>Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

<sup>2</sup>Science and Research Branch, Islamic Azad University, Tehran, Iran.

<sup>3</sup>Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran.

Accepted 16 March, 2011

Quantum Monte Carlo (QMC), molecular dynamics (MD) simulations and density functional theory (DFT) calculations at the level of B3LYP/3-21G was carried out on the structure and stability of  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> in bulk and different solvent medium. NMR parameters and thermodynamic properties were calculated to obtain chemical shift, stability and solvent effect. It was found that computationally efficient solvent modeling is possible and can reveal fine details of molecular structure, stability and dynamics. The results showed high stability of  $B_{10}N_{11}$  nanocone, it can be the best candidate and much favorable in biological systems and drug delivery.

**Key words:** Molecular dynamics, density functional theory (DFT), B<sub>10</sub>N<sub>11</sub>H<sub>7</sub>(Thr)<sub>2</sub>, nanocone, Monte Carlo.

## INTRODUCTION

Most of the studies have been done on carbon nanotubes (lijima, 1991; lijima and Ichihashi, 1993; Bethune et al., 1993) and C60 (Kroto et al., 1985) since they have been discovered. Many novel structures such as carbon nanocones and boron nitride nanocones have been viewed as intermediate between nanotubes and graphene sheet (Sattler, 1995; Zhi et al., 2005).

As a result of their unique properties than those of carbon structure, in recent years there has been a great interest in studying the properties of the nanocones by scientist (lijima et al., 1992) and they believe these systems will revolutionized new future of nanoscience and technology and thus opening a very new and a vast filed of theore-tical and experimental research. Studies and the publi-cations on nanocones have been on since 1994 (Rubio et al., 1994) with employing various theoretical and experi-mental techniques to investigate valuable properties of nanocones (Rubio et al., 1994; Qu et al., 2008) but most of these studies have been performed experimentally (Bourgeois et al., 2000). The fascinating novel structures of boron nitride (BN) (Rubio

et al., 1994) have been intensively studied, since they have unique and interesting properties such as electronic (Song et al., 1994; Yakobson and Smalley, 1997) and mechanical (Depres et al., 1995; lijima et al., 1996) properties. Boron Nitride Nanocones (BNNCs) represent an important class of nanocnes; consist of B and N atoms. The number of electrons in combination of B and N atoms is the same as two carbon atoms, therefore they have similar properties and also in some cases, they are better candidates to predict properties compare to other composite materials. BNNCs have been investigated and synthesized (Rubio et al., 1994; Bourgeois et al., 2000; Terauchi et al., 2000) and shown they have very interesting properties in comparison with similar carbon nanostructure. We have proposed a B<sub>10</sub>N<sub>13</sub> nanocone as a particular case to attach to Threonin, trough B terminated atoms to investigate thermodynamic properties. BNNCs are widely applicable in many fields such as cold electron source (Baylor et al., 2002: Monajjemi et al., 2010), and probes for electronic microscopy devices.

The purpose of this work is to understand stability, atomic structure and thermochemistry properties of one of the particular BNNCs as  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub>.

The BN nanocones are the structures with polarity and

<sup>\*</sup>Corresponding author. E- mail: m\_monajjemi@cm.utexas.edu.

high reactivity and flexibility to reagent medium surrounded, because the negative charge at N atom positions and also positive charge at B atom positions. In present work based on DFT calculations, molecular dynamic simulation (MD) (Atkins and Friedman, 1997; Billing and Mikkelsen, 1997) and quantum Monte Carlo (QMC) (Monajjem et al., 2006; Monajjemi et al., 2006), we have simulated  $B_{10}N_{11}H_7$  (Thr) $_2$  structure and investigated its properties. In this research, solvent effect has been performed, using onsager self-consistent model reaction field (SCRF) for the analysis of thermodynamic parameters, and calculating Gibbs free energy, enthalpy and dipole moment. We have also computed the Mulliken charge and found active sites to obtain NMR parameters.

#### **COMPUTATIONAL DETAILS**

In present work, all calculations were performed using the Gaussian98 program (Frisch et al., 1998) in the electronic ground state. We used this package to study many specific properties of  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> such as molecular energies and structures, thermodynamic properties, Atomic charges, Multipole moment and NMR shielding in both gas phase and different solvent.

Density functional theory (DFT) (Parr and Yang, 1989) is a general computational method that is frequently used in computing properties of macromolecules as we applied this method to study on B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub>. The atomic orbitals generally described by analytical basis set, and a basis set consisting of many atomic functions, gives better description of the electronic structure of the system. The Becke 3 Lee-Yang-Parr (B3LYP) functional (Becke, 1993; Parr and Yang, 1989) with 3-21G split-valance basis set was used in this work. Complete geometry optimizations for B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub> were carried out at B3LYP /3-21G level of theory. We have performed frequency test at the same theoretical level to clarify the optimized structure and wave function is ground state, without imaginary frequencies. MD and QMC simulations are two methods for determining physical properties of macroscopic, they were used to find additional minima in the present work. In both methods, the standard program package was used and the temperature T is sequentially increased, step by step, from room temperature (RT, 300K) to 310K.

Solvent effect on  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> was calculated in different solvents and five different temperatures of 298, 300, 305, 310 and 315K by using the same method and basis sets. The average atomic charges have been derived from DFT calculations to obtain active sites in  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub>.

It is well known that NMR spectroscopy is extremely sensitive to molecular structure and also environmental effects (Parr and Yang, 1989; Monajjemi et al., 2005, 2007, 2008; Kaupp et al., 2004; Otting and Liepinsh, 1995).

NMR investigation gives deeper physical insight into the influence of the solvent effect. In this work NMR parameters were calculated in two cases: (1) solute in the gas phase and (2) solute in the different solvent mediums. In all calculations the default gaugae-including atomic orbital (GIAO) (Donald and Martin, 2009), orbitals were used to obtain molecular magnetic susceptibilities, NMR shielding with Gaussian program.

### **RESULTS AND DISCUSSION**

 $B_{10}N_{13}$  nanocone as a particular case was considered to attach to Threonin (Thr), trough B terminated atoms. The

resulting BNNCs were simulated by (BN) Thr containing 10 B atoms plus 13 N atoms, to investigate stability as well as thermodynamic properties. Except for some test cases we have used B3LYP/3-21G level of theory for geometry optimization of  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub>. The results have given in four tables and six figures as follow. Full geometry optimization of B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub> has been carried out to find ground state structure shown in Figure 1. Figures 2 and 3 showed dependency of dipole moment to solvent dielectric constant and NMR parameters in five different solvents and gas phase respectively. A very good agreement can be observed between the calculated average Mulliken charges and medium in Figure 4. As it shown in Figures 5 and 6, we have prepared our system for MD and QMC simulations for four different temperatures of 300, 305, 310 and 315K. In each case we followed standard default of MD and QMC simulations and performed a series of the calculations under a constant temperature and environmental setup with the interval of 0 < t < 100 ps and 0 < t < 0.1 ps for QMC and MD respectively. Using DFT method, the computed energetic data (enthalpy H, internal energy E and Gibbs free energy G) as well as dipole moment for various solvent are given in Table 1 and 2 respectively. To make our analysis clear and easier, B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub> is divided in three layers of atoms (or active sites) as shown in Table 3. These four layers constituted by: (1) six atoms, (2) three atoms, (3) five atoms, (4) seven atoms. We choose these particular layers due to the location of more negative (N atoms) and positive electronic charge (B atoms). The calculated Mulliken charge values per atom per layer are shown in Table 3. The NMR parameters were computed with concentration on active sites, and data summarized in Table 4.

#### **Conclusions**

In summary, an analysis of the MD, QMC and DFT calculations at the level of B3LYP/3-21G on B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> Thr)<sub>2</sub> nanocone have been performed. All calculations indicated that B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub> nancone structure possesses lower energy. The computed energy of the studied structure shown and proved the high stability of system without distortion and also more stable in different solvents. Further, to determine the location of active sites, Mulliken charge and NMR parameters were also analyzed and the modeling provided chemical shift to study not only molecular structure, but also the specific solvent-solute interactions. The calculated results were strongly dependent on the adopted QMC and MD simulations. This is important to fully understand the geometrical specialty of B<sub>10</sub>N<sub>11</sub>H<sub>5</sub> (Thr)<sub>2</sub> nanocone and the few other recently reported faceted nanocones, more favorable energetically and stability. With regard to biochemical phenomena, the results, illustrate a new picture of the BNNCs as a favorable candidate in biological system,

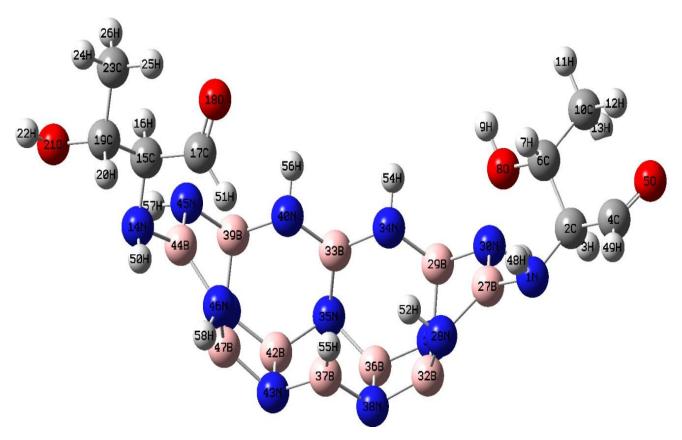



Figure 1. 3D view of  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub>, where pink, blue, red, gray and light gray sphere indicate B, N, O, C and H atoms respectively.

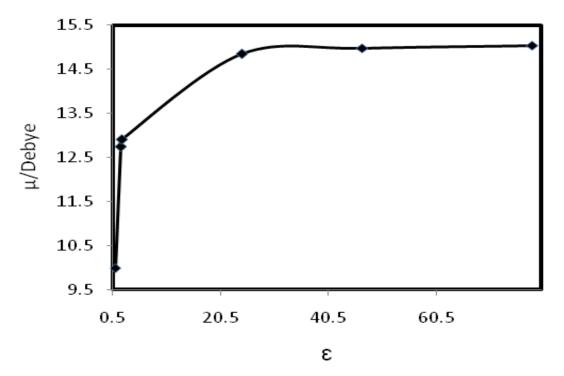



Figure 2. Calculated dipole moment  $\mu$  (Debye) versus dielectric constant ( $\epsilon$ ) at bulk and five different solvents.

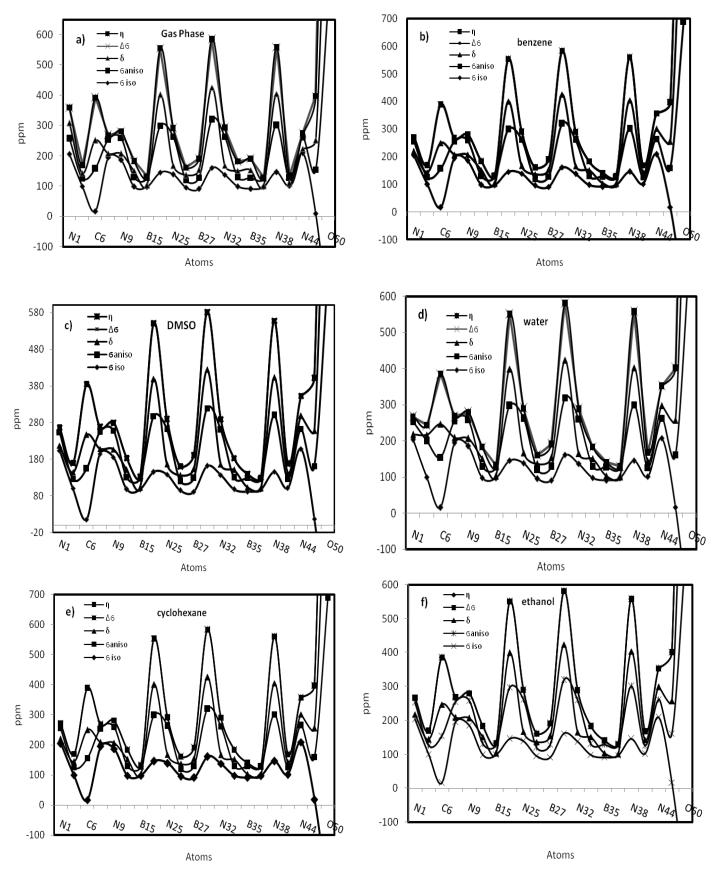



Figure 3. NMR parameters calculated (B3LYP/32-G) for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> in (a) gas phase, (b) benzene, (c)DMSO, (d) water (e) cyclohexane, (f) ethanol.

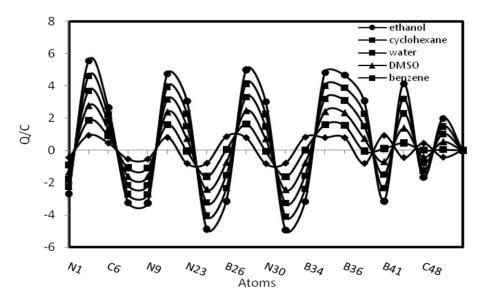



Figure 4. Average Mulliken charge values per atom for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> in five.

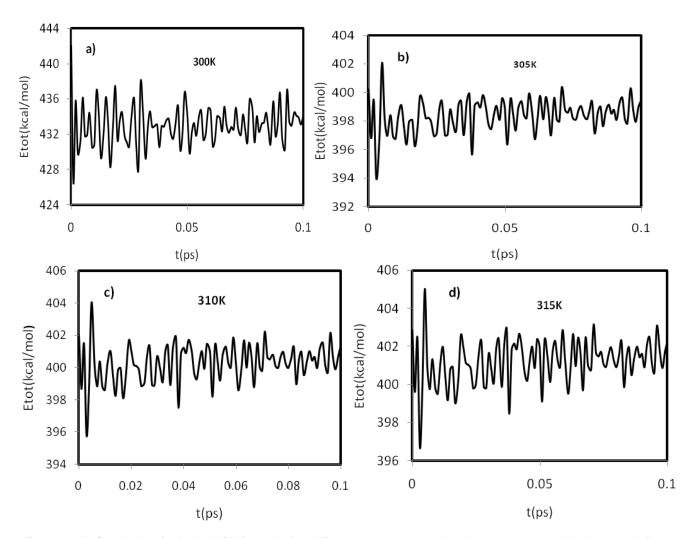



Figure 5. MD Calculations for  $B_{10}N_{11}H_7(Thr)_2$ : under four different temperatures and environmental setup with the interval of 0 < t < 0.1 ps.

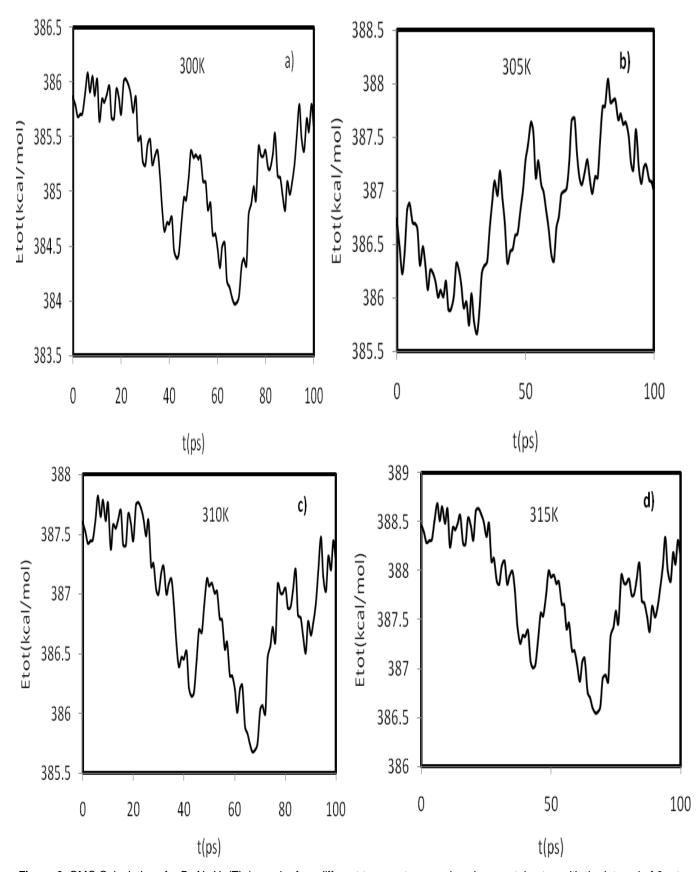



Figure 6. QMC Calculations for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub>: under four different temperatures and environmental setup with the interval of 0 < t < 100 ps.

**Table 1.** Computed energetic data ,enthalpy H (kcal/mol), internal energy E (kcal/mol) and Gibbs free energy G (kcal/mol) for B<sub>10</sub>N<sub>11</sub>H<sub>7</sub> (Thr)<sub>2</sub>.

|       | Temperat    | ure          | 298 K         | 300 K            | 305 K           | 310 K          | 315 K           |
|-------|-------------|--------------|---------------|------------------|-----------------|----------------|-----------------|
|       | Coo         | -G(Kcal/mol) | 986338.5027   | 986338.87987442  | 986339.90773498 | 986340.9456356 | 986341.99483158 |
|       | Gas         | -H(Kcal/mol) | 986277.7786   | 986277.54333083  | 986276.90201612 | 986276.2506612 | 986275.59114878 |
|       | ε=1         | -E(Kcal/mol) | 986278.371015 | 986278.139464862 | 986277.5075627  | 986276.8668755 | 986276.21677575 |
|       | Water       | -G(Kcal/mol) | 986337.6756   | 986338.046541808 | 986339.0574596  | 986340.0784175 | 986341.11004318 |
|       | ε=78.39     | -H(Kcal/mol) | 986277.961252 | 986277.726563611 | 986277.0865039  | 986410.8207009 | 986275.77940163 |
|       | £=10.39     | -E(Kcal/mol) | 986278.553621 | 986278.323325145 | 986277.6926780  | 986277.0532459 | 986276.40502860 |
|       | Ethanol     | -G(Kcal/mol) | 986337.721491 | 986338.092977511 | 986339.1032678  | 986340.1242257 | 986341.15522387 |
|       |             | -H(Kcal/mol) | 986278.016473 | 986277.781784447 | 986277.1417247  | 986276.4922524 | 986275.83399495 |
| Phase | ε=24.55     | -E(Kcal/mol) | 986278.608841 | 986278.377918472 | 986277.7478989  | 986277.1084667 | 986276.46024944 |
|       | DMSO        | -G(Kcal/mol) | 986337.688861 | 986338.060347017 | 986339.0706373  | 986340.0915952 | 986341.12322088 |
|       |             | -H(Kcal/mol) | 986277.979449 | 986277.745388896 | 986277.1047016  | 986276.4558568 | 986275.79759940 |
|       | ε=46.8      | -E(Kcal/mol) | 986278.572446 | 986278.341522921 | 986277.7108758  | 986277.0714436 | 986276.42322637 |
|       | _           | -G(Kcal/mol) | 986338.128745 | 986338.500231176 | 986339.5105214  | 986340.5321069 | 986341.56373255 |
|       | Benzene     | -H(Kcal/mol) | 986278.406783 | 986278.172095356 | 986277.5320356  | 986276.8825633 | 986276.22367835 |
|       | ε=2.247     | -E(Kcal/mol) | 986278.999152 | 986278.768229381 | 986412.5214834  | 986277.4987776 | 986276.84993283 |
|       |             | -G(Kcal/mol) | 986338.160121 | 986338.532234161 | 986339.5431519  | 986340.5647374 | 986341.59699055 |
|       | Cyclohexane | -H(Kcal/mol) | 986278.428119 | 986278.193430679 | 986277.5533709  | 986276.9038986 | 986276.24501368 |
|       | ε =2.023    | -E(Kcal/mol) | 986279.020488 | 986278.789564704 | 986278.1595451  | 986277.5194854 | 986276.87126816 |

**Table 2.** Calculated dipole moment  $\mu$  (Debye) versus dielectric constant for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> at B3LYP/3-21G in five different solvents and gas phase.

| Medium      | Dielectric constant (ε) | μ (Debye) |
|-------------|-------------------------|-----------|
| Gas         | 1                       | 9.9948    |
| Cyclohexane | 2.023                   | 12.7379   |
| Benzene     | 2.247                   | 12.9032   |
| Ethanol     | 24.55                   | 14.8415   |
| DMSO        | 46.8                    | 14.9741   |
| Water       | 78.39                   | 15.0369   |

**Table 3.** Average Mulliken charge values per atom per layer for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> in five different solvents and gas phase.

| Layer   | Atom | Gas      | Benzene  | DMSO     | Water    | Cyclohexane | Ethanol  |
|---------|------|----------|----------|----------|----------|-------------|----------|
|         | B34  | 0.812292 | -0.79635 | -0.79603 | -0.79602 | -0.79637    | -0.79605 |
|         | B26  | 0.848251 | -0.79719 | -0.7969  | -0.7969  | -0.79722    | -0.79692 |
| Lover 1 | B35  | 0.786682 | 0.805621 | 0.802534 | 0.802444 | 0.80588     | 0.802721 |
| Layer 1 | N38  | -0.81384 | 0.777324 | 0.773288 | 0.773171 | 0.777686    | 0.77353  |
|         | B41  | 0.921925 | -0.81292 | -0.81206 | -0.81203 | -0.81299    | -0.81211 |
|         | B36  | 0.781718 | 0.778762 | 0.771011 | 0.770783 | 0.779404    | 0.771482 |
|         | N44  | -0.45205 | 0.916218 | 0.91368  | 0.913563 | 0.916393    | 0.913866 |
| Layer 2 | C48  | 0.435833 | -0.42122 | -0.41874 | -0.41869 | -0.42139    | -0.41891 |
|         | O50  | -0.42541 | 0.475104 | 0.484096 | 0.484346 | 0.474391    | 0.483509 |
|         | N25  | -0.79749 | -0.81381 | -0.81365 | -0.81365 | -0.81383    | -0.81366 |
|         | B27  | 0.784503 | 0.84278  | 0.837056 | 0.836888 | 0.843241    | 0.837419 |
| Layer 3 | N30  | -0.82597 | 0.775183 | 0.763056 | 0.762695 | 0.776147    | 0.763836 |
|         | N32  | -0.79656 | -0.82514 | -0.82449 | -0.82446 | -0.82519    | -0.82453 |
|         | B26  | 0.848251 | -0.79719 | -0.7969  | -0.7969  | -0.79722    | -0.79692 |
|         | B15  | 0.785292 | 0.778691 | 0.76991  | 0.769647 | 0.779379    | 0.770476 |
|         | N8   | -0.54115 | -0.5404  | -0.53831 | -0.53825 | -0.54058    | -0.53843 |
|         | N23  | -0.81384 | 0.778691 | 0.76991  | 0.769647 | 0.779379    | 0.770476 |
| Layer 4 | B14  | 0.796561 | 0.791304 | 0.784353 | 0.784144 | 0.791846    | 0.784799 |
|         | N9   | -0.54561 | -0.54385 | -0.54128 | -0.54121 | -0.54407    | -0.54143 |
|         | B3   | 0.924982 | 0.923258 | 0.921182 | 0.921111 | 0.92341     | 0.921305 |
|         | N1   | -0.44838 | -0.44854 | -0.44817 | -0.44816 | -0.44858    | -0.44817 |

**Table 4.** Computed NMR parameters for  $B_{10}N_{11}H_7$  (Thr)<sub>2</sub> in five different solvents and gas phase.

|      |          | Ga       | s phase  |          | Water      |          |          |          |          |            |
|------|----------|----------|----------|----------|------------|----------|----------|----------|----------|------------|
| Atom | в iso    | бaniso   | δ        | Δσ       | η          | б iso    | баniso   | δ        | Δσ       | η          |
| N1   | 205.2212 | 51.3516  | 51.3516  | 51.3517  | 0.05375751 | 203.6597 | 49.6387  | -36.201  | 49.6388  | 0.05929337 |
| B3   | 99.8502  | 26.1219  | 17.4145  | 26.12185 | 0.01704297 | 99.7525  | 99.7525  | 17.4631  | 26.1946  | 0.01758616 |
| C6   | 16.5448  | 140.8158 | 93.8772  | 140.8158 | 0.1019466  | 15.7857  | 138.3514 | 92.2343  | 138.3515 | 0.1072762  |
| N8   | 194.1503 | 60.0747  | -46.3562 | 60.0747  | 0.07417274 | 194.6425 | 59.9341  | -46.1259 | 59.93415 | 0.0788816  |
| N9   | 185.8593 | 73.7298  | -52.4482 | 73.7298  | 0.07851162 | 185.6629 | 72.8467  | -51.9632 | 72.8467  | 0.08350673 |

Table 4. Contd.

| B14                                                                         | 98.1862                                                                                                                                                                | 31.8245                                                                                                                                                  | 21.2163                                                                                                                                                    | 31.82445                                                                                              | 0.0147917                                                                                                                                        | 97.9437                                                                                                                                                                | 32.0367                                                                                                                                                              | 21.3577                                                                                                                                     | 32.03665                                                                                                        | 0.01471346                                                                                                                                      |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| B15                                                                         | 97.3265                                                                                                                                                                | 29.9279                                                                                                                                                  | -25.2423                                                                                                                                                   | 29.92795                                                                                              | 0.04300384                                                                                                                                       | 97.4274                                                                                                                                                                | 30.2824                                                                                                                                                              | -25.1524                                                                                                                                    | 30.2824                                                                                                         | 0.04542717                                                                                                                                      |
| N23                                                                         | 145.4663                                                                                                                                                               | 153.7932                                                                                                                                                 | 102.5288                                                                                                                                                   | 153.7933                                                                                              | 0.07923317                                                                                                                                       | 145.3826                                                                                                                                                               | 151.9511                                                                                                                                                             | 101.3008                                                                                                                                    | 151.9511                                                                                                        | 0.08521995                                                                                                                                      |
| N25                                                                         | 138.6591                                                                                                                                                               | 124.2298                                                                                                                                                 | -95.504                                                                                                                                                    | 124.2298                                                                                              | 0.1523779                                                                                                                                        | 138.5064                                                                                                                                                               | 123.4186                                                                                                                                                             | -95.3406                                                                                                                                    | 123.4187                                                                                                        | 0.1635112                                                                                                                                       |
| B26                                                                         | 95.4217                                                                                                                                                                | 24.6611                                                                                                                                                  | 16.4407                                                                                                                                                    | 24.661                                                                                                | 0.01693832                                                                                                                                       | 95.3621                                                                                                                                                                | 24.4943                                                                                                                                                              | 16.3295                                                                                                                                     | 24.4942                                                                                                         | 0.01873584                                                                                                                                      |
| B27                                                                         | 91.1146                                                                                                                                                                | 37.3643                                                                                                                                                  | 24.9095                                                                                                                                                    | 37.36425                                                                                              | 0.03447538                                                                                                                                       | 91.2645                                                                                                                                                                | 37.4448                                                                                                                                                              | 24.9632                                                                                                                                     | 37.4448                                                                                                         | 0.03735645                                                                                                                                      |
| N30                                                                         | 160.874                                                                                                                                                                | 159.0736                                                                                                                                                 | 106.0491                                                                                                                                                   | 159.0736                                                                                              | 0.02424199                                                                                                                                       | 161.6092                                                                                                                                                               | 157.3774                                                                                                                                                             | 104.9182                                                                                                                                    | 157.3774                                                                                                        | 0.02694217                                                                                                                                      |
| N32                                                                         | 137.6093                                                                                                                                                               | 125.4131                                                                                                                                                 | -95.12                                                                                                                                                     | 125.4132                                                                                              | 0.1501851                                                                                                                                        | 137.0768                                                                                                                                                               | 123.333                                                                                                                                                              | -95.0922                                                                                                                                    | 123.333                                                                                                         | 0.1628479                                                                                                                                       |
| B34                                                                         | 98.3457                                                                                                                                                                | 31.2758                                                                                                                                                  | 20.8505                                                                                                                                                    | 31.2758                                                                                               | 0.005891273                                                                                                                                      | 98.0419                                                                                                                                                                | 31.8994                                                                                                                                                              | 21.2663                                                                                                                                     | 31.89945                                                                                                        | 0.01136999                                                                                                                                      |
| B35                                                                         | 91.0759                                                                                                                                                                | 37.2111                                                                                                                                                  | 24.8074                                                                                                                                                    | 37.21115                                                                                              | 0.03401538                                                                                                                                       | 91.2616                                                                                                                                                                | 37.0357                                                                                                                                                              | -24.8027                                                                                                                                    | 37.03565                                                                                                        | 0.03758105                                                                                                                                      |
| B36                                                                         | 97.1876                                                                                                                                                                | 28.4725                                                                                                                                                  | -25.71                                                                                                                                                     | 28.4724                                                                                               | 0.04568793                                                                                                                                       | 97.1533                                                                                                                                                                | 29.2091                                                                                                                                                              | -25.6985                                                                                                                                    | 29.20905                                                                                                        | 0.04815386                                                                                                                                      |
| N38                                                                         | 145.8798                                                                                                                                                               | 154.8399                                                                                                                                                 | 103.2266                                                                                                                                                   | 154.8399                                                                                              | 0.08599162                                                                                                                                       | 145.4821                                                                                                                                                               | 154.4838                                                                                                                                                             | 102.9892                                                                                                                                    | 154.4839                                                                                                        | 0.09063939                                                                                                                                      |
| B41                                                                         | 101.5787                                                                                                                                                               | 25.6497                                                                                                                                                  | -17.3573                                                                                                                                                   | 25.6497                                                                                               | 0.0248096                                                                                                                                        | 101.0145                                                                                                                                                               | 25.2621                                                                                                                                                              | 16.8414                                                                                                                                     | 25.2621                                                                                                         | 0.02273998                                                                                                                                      |
| N44                                                                         | 209.343                                                                                                                                                                | 51.8383                                                                                                                                                  | -38.3068                                                                                                                                                   | 51.8383                                                                                               | 0.05923216                                                                                                                                       | 208.2375                                                                                                                                                               | 54.0932                                                                                                                                                              | 36.0622                                                                                                                                     | 54.09325                                                                                                        | 0.05140984                                                                                                                                      |
| C48                                                                         | 8.8502                                                                                                                                                                 | 145.4784                                                                                                                                                 | 96.9856                                                                                                                                                    | 145.4784                                                                                              | 0.1075887                                                                                                                                        | 16.6962                                                                                                                                                                | 144.5175                                                                                                                                                             | 96.3449                                                                                                                                     | 144.5174                                                                                                        | 0.1139841                                                                                                                                       |
| O50                                                                         | -345.4604                                                                                                                                                              | 1064.9991                                                                                                                                                | 709.9994                                                                                                                                                   | 1064.999                                                                                              | 0.8030118                                                                                                                                        | -303.3762                                                                                                                                                              | 994.4468                                                                                                                                                             | 662.9645                                                                                                                                    | 994.4467                                                                                                        | 0.7134163                                                                                                                                       |
|                                                                             |                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                            |                                                                                                       |                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                             |                                                                                                                 |                                                                                                                                                 |
|                                                                             |                                                                                                                                                                        | Г                                                                                                                                                        | MSO                                                                                                                                                        |                                                                                                       |                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                      | Benzene                                                                                                                                     |                                                                                                                 |                                                                                                                                                 |
|                                                                             |                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                            |                                                                                                       |                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                                      | Delizelle                                                                                                                                   |                                                                                                                 |                                                                                                                                                 |
| Atoms                                                                       | б iso                                                                                                                                                                  | <i>6</i> aniso −                                                                                                                                         | δ                                                                                                                                                          | Δ6                                                                                                    | η                                                                                                                                                | 6 iso                                                                                                                                                                  | <i>6</i> aniso                                                                                                                                                       | δ                                                                                                                                           | Δ6                                                                                                              | η                                                                                                                                               |
| Atoms<br>N1                                                                 | <i>6 iso</i><br>203.6917                                                                                                                                               |                                                                                                                                                          |                                                                                                                                                            | <b>∆</b> 6<br>49.7                                                                                    | <b>η</b><br>0.0593                                                                                                                               | <b><i>6 iso</i></b><br>204.647                                                                                                                                         | <i>6aniso</i><br>50.6902                                                                                                                                             |                                                                                                                                             | <b>∆</b> 6<br>50.7                                                                                              | <b>η</b><br>0.0584                                                                                                                              |
|                                                                             |                                                                                                                                                                        | <i>6</i> aniso                                                                                                                                           | δ                                                                                                                                                          |                                                                                                       | -                                                                                                                                                |                                                                                                                                                                        |                                                                                                                                                                      | δ                                                                                                                                           |                                                                                                                 |                                                                                                                                                 |
| N1                                                                          | 203.6917                                                                                                                                                               | <i><b>6aniso</b></i><br>49.6689                                                                                                                          | <b>δ</b><br>-36.2                                                                                                                                          | 49.7                                                                                                  | 0.0593                                                                                                                                           | 204.647                                                                                                                                                                | 50.6902                                                                                                                                                              | <b>δ</b><br>-36.1047                                                                                                                        | 50.7                                                                                                            | 0.0584                                                                                                                                          |
| N1<br>B3                                                                    | 203.6917<br>99.7548                                                                                                                                                    | <i>6aniso</i><br>49.6689<br>26.1935                                                                                                                      | <b>δ</b><br>-36.2<br>17.4623                                                                                                                               | 49.7<br>26.2                                                                                          | 0.0593<br>0.0176                                                                                                                                 | 204.647<br>99.8288<br>16.267<br>194.4222                                                                                                                               | 50.6902<br>26.1582                                                                                                                                                   | <b>δ</b><br>-36.1047<br>17.4388                                                                                                             | 50.7<br>26.2                                                                                                    | 0.0584<br>0.0180                                                                                                                                |
| N1<br>B3<br>C6<br>N8<br>N9                                                  | 203.6917<br>99.7548<br>15.804                                                                                                                                          | <i>saniso</i><br>49.6689<br>26.1935<br>138.3981                                                                                                          | <b>δ</b><br>-36.2<br>17.4623<br>92.2654                                                                                                                    | 49.7<br>26.2<br>138<br>5.99<br>72.9                                                                   | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835                                                                                                   | 204.647<br>99.8288<br>16.267                                                                                                                                           | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429                                                                                                                 | <b>δ</b><br>-36.1047<br>17.4388<br>93.263                                                                                                   | 50.7<br>26.2<br>140<br>59.9<br>73.3                                                                             | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844                                                                                                   |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14                                           | 203.6917<br>99.7548<br>15.804<br>194.6356                                                                                                                              | <b>6aniso</b> 49.6689 26.1935 138.3981 59.934 72.8673 32.0328                                                                                            | δ<br>-36.2<br>17.4623<br>92.2654<br>-46.1276                                                                                                               | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32                                                             | 0.0593<br>0.0176<br>0.107E<br>0.0789                                                                                                             | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029                                                                                                        | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067                                                                                                      | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711                                                                       | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9                                                                     | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153                                                                                         |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15                                    | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707                                                                                                                  | 6aniso<br>49.6689<br>26.1935<br>138.3981<br>59.934<br>72.8673<br>32.0328<br>30.2756                                                                      | <b>5</b> -36.2 17.4623 92.2654 -46.1276 -51.9699 21.3552 -25.1526                                                                                          | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3                                                     | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455                                                                               | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215                                                                                                                   | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059                                                                                            | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997                                                                                  | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1                                                             | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461                                                                               |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15<br>N23                             | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869                                                                                | 6aniso<br>49.6689<br>26.1935<br>138.3981<br>59.934<br>72.8673<br>32.0328<br>30.2756<br>151.975                                                           | <b>5</b> -36.2 17.4623 92.2654 -46.1276 -51.9699 21.3552 -25.1526 101.3167                                                                                 | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152                                              | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852                                                                     | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002                                                                                 | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788                                                                                | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711<br>-25.1562<br>101.9192                                               | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153                                                      | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858                                                                     |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15<br>N23<br>N25                      | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109                                                                    | 6aniso 49.6689 26.1935 138.3981 59.934 72.8673 32.0328 30.2756 151.975 123.4317                                                                          | -36.2<br>17.4623<br>92.2654<br>-46.1276<br>-51.9699<br>21.3552<br>-25.1526<br>101.3167<br>-95.3455                                                         | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123                                       | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164                                                            | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748                                                                     | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234                                                                    | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711<br>-25.1562<br>101.9192<br>-95.4658                                   | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124                                               | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165                                                            |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15<br>N23<br>N25<br>B26               | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364                                                          | 6aniso 49.6689 26.1935 138.3981 59.934 72.8673 32.0328 30.2756 151.975 123.4317 24.4954                                                                  | -36.2<br>17.4623<br>92.2654<br>-46.1276<br>-51.9699<br>21.3552<br>-25.1526<br>101.3167<br>-95.3455<br>16.3303                                              | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5                               | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187                                                  | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224                                                          | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189                                                         | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711<br>-25.1562<br>101.9192<br>-95.4658<br>16.3459                        | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5                                       | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190                                                  |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15<br>N23<br>N25<br>B26<br>B27        | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624                                               | 6aniso<br>49.6689<br>26.1935<br>138.3981<br>59.934<br>72.8673<br>32.0328<br>30.2756<br>151.975<br>123.4317<br>24.4954<br>37.4428                         | <b>5</b> -36.2 17.4623 92.2654 -46.1276 -51.9699 21.3552 -25.1526 101.3167 -95.3455 16.3303 24.9619                                                        | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4                       | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374                                        | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811                                               | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938                                              | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711<br>-25.1562<br>101.9192<br>-95.4658<br>16.3459<br>24.9292             | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4                               | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377                                        |
| N1<br>B3<br>C6<br>N8<br>N9<br>B14<br>B15<br>N23<br>N25<br>B26<br>B27<br>N30 | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624<br>161.6014                                   | 6aniso<br>49.6689<br>26.1935<br>138.3981<br>59.934<br>72.8673<br>32.0328<br>30.2756<br>151.975<br>123.4317<br>24.4954<br>37.4428<br>157.3959             | **5                                                                                                                                                        | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4<br>157                | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374<br>0.0269                              | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811<br>161.2901                                   | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938<br>158.0438                                  | δ<br>-36.1047<br>17.4388<br>93.263<br>-46.2133<br>-52.1997<br>21.2711<br>-25.1562<br>101.9192<br>-95.4658<br>16.3459<br>24.9292<br>105.3625 | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4<br>158                        | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377<br>0.0271                              |
| N1 B3 C6 N8 N9 B14 B15 N23 N25 B26 B27 N30 N32                              | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624<br>161.6014<br>137.0887                       | 6aniso<br>49.6689<br>26.1935<br>138.3981<br>59.934<br>72.8673<br>32.0328<br>30.2756<br>151.975<br>123.4317<br>24.4954<br>37.4428<br>157.3959<br>123.3496 | **5                                                                                                                                                        | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4<br>157<br>123         | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374<br>0.0269<br>0.163                     | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811<br>161.2901<br>137.5058                       | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938<br>158.0438<br>123.8768                      | <b>δ</b> -36.1047 17.4388 93.263 -46.2133 -52.1997 21.2711 -25.1562 101.9192 -95.4658 16.3459 24.9292 105.3625 -95.2689                     | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4<br>158<br>124                 | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377<br>0.0271<br>0.164                     |
| N1 B3 C6 N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34                          | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624<br>161.6014<br>137.0887<br>98.0435            | 6aniso 49.6689 26.1935 138.3981 59.934 72.8673 32.0328 30.2756 151.975 123.4317 24.4954 37.4428 157.3959 123.3496 31.8989                                | -36.2<br>17.4623<br>92.2654<br>-46.1276<br>-51.9699<br>21.3552<br>-25.1526<br>101.3167<br>-95.3455<br>16.3303<br>24.9619<br>104.9306<br>-95.0968<br>21.266 | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4<br>157<br>123<br>31.9 | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374<br>0.0269<br>0.163<br>0.0113           | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811<br>161.2901<br>137.5058<br>98.1128            | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938<br>158.0438<br>123.8768<br>31.866            | <b>δ</b> -36.1047 17.4388 93.263 -46.2133 -52.1997 21.2711 -25.1562 101.9192 -95.4658 16.3459 24.9292 105.3625 -95.2689 21.244              | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4<br>158<br>124<br>31.9         | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377<br>0.0271<br>0.164<br>0.0107           |
| N1 B3 C6 N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34 B35                      | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624<br>161.6014<br>137.0887<br>98.0435<br>91.2601 | 6aniso 49.6689 26.1935 138.3981 59.934 72.8673 32.0328 30.2756 151.975 123.4317 24.4954 37.4428 157.3959 123.3496 31.8989 37.0388                        | **5                                                                                                                                                        | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4<br>157<br>123<br>31.9 | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374<br>0.0269<br>0.163<br>0.0113<br>0.0376 | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811<br>161.2901<br>137.5058<br>98.1128<br>91.1939 | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938<br>158.0438<br>123.8768<br>31.866<br>37.1582 | δ -36.1047 17.4388 93.263 -46.2133 -52.1997 21.2711 -25.1562 101.9192 -95.4658 16.3459 24.9292 105.3625 -95.2689 21.244 -24.8777            | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4<br>158<br>124<br>31.9<br>37.2 | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377<br>0.0271<br>0.164<br>0.0107<br>0.0380 |
| N1 B3 C6 N8 N9 B14 B15 N23 N25 B26 B27 N30 N32 B34                          | 203.6917<br>99.7548<br>15.804<br>194.6356<br>185.6707<br>97.9487<br>97.4257<br>145.3869<br>138.5109<br>95.364<br>91.2624<br>161.6014<br>137.0887<br>98.0435            | 6aniso 49.6689 26.1935 138.3981 59.934 72.8673 32.0328 30.2756 151.975 123.4317 24.4954 37.4428 157.3959 123.3496 31.8989                                | -36.2<br>17.4623<br>92.2654<br>-46.1276<br>-51.9699<br>21.3552<br>-25.1526<br>101.3167<br>-95.3455<br>16.3303<br>24.9619<br>104.9306<br>-95.0968<br>21.266 | 49.7<br>26.2<br>138<br>5.99<br>72.9<br>32<br>30.3<br>152<br>123<br>24.5<br>37.4<br>157<br>123<br>31.9 | 0.0593<br>0.0176<br>0.107E<br>0.0789<br>0.0835<br>0.0147<br>0.0455<br>0.0852<br>0.164<br>0.0187<br>0.0374<br>0.0269<br>0.163<br>0.0113           | 204.647<br>99.8288<br>16.267<br>194.4222<br>185.9215<br>98.1029<br>97.3649<br>145.5002<br>138.6748<br>95.4224<br>91.1811<br>161.2901<br>137.5058<br>98.1128            | 50.6902<br>26.1582<br>139.8945<br>59.8946<br>73.3429<br>31.9067<br>30.059<br>152.8788<br>123.8234<br>24.5189<br>37.3938<br>158.0438<br>123.8768<br>31.866            | <b>δ</b> -36.1047 17.4388 93.263 -46.2133 -52.1997 21.2711 -25.1562 101.9192 -95.4658 16.3459 24.9292 105.3625 -95.2689 21.244              | 50.7<br>26.2<br>140<br>59.9<br>73.3<br>31.9<br>30.1<br>153<br>124<br>24.5<br>37.4<br>158<br>124<br>31.9         | 0.0584<br>0.0180<br>0.109<br>0.0799<br>0.0844<br>0.0153<br>0.0461<br>0.0858<br>0.165<br>0.0190<br>0.0377<br>0.0271<br>0.164<br>0.0107           |

Table 4. Contd.

| B41   | 101.0119  | 25.2607  | 16.8405  | 25.3 | 0.0227  | 100.9629  | 25.2337  | 16.8225  | 25.2 | 0.0224 |
|-------|-----------|----------|----------|------|---------|-----------|----------|----------|------|--------|
| N44   | 208.2634  | 54.1266  | 36.0844  | 54.1 | 0.0515  | 209.1167  | 55.186   | 36.7906  | 55.2 | 0.0531 |
| C48   | 16.7457   | 144.4291 | 96.286   | 144  | 0.114   | 17.9135   | 142.1492 | 94.7661  | 142  | 0.119  |
| O50   | -303.1195 | 994.0766 | 662.7178 | 994  | 0.713   | -297.1894 | 985.9879 | 657.3253 | 986  | 0.706  |
|       |           |          |          |      |         |           |          |          |      |        |
|       |           | Cyclohe  | xane     |      |         |           |          | Ethanol  |      |        |
| Atoms | б iso     | бaniso   | δ        | Δσ   | η       | б iso     | бапіso   | δ        | Δσ   | η      |
| N1    | 204.7253  | 50.7732  | -36.0936 | 50.8 | 0.05.84 | 203.7507  | 49.7335  | -36.1952 | 49.7 | 0.0592 |
| B3    | 99.834    | 26.1557  | 17.4372  | 26.2 | 0.0180  | 99.7596   | 26.1912  | 17.4607  | 26.2 | 0.0176 |
| C6    | 16.2999   | 140.0171 | 93.3448  | 140  | 0.110   | 15.8408   | 138.4956 | 92.3304  | 13.8 | 0.108  |
| N8    | 194.4069  | 59.8922  | -46.22   | 59.9 | 0.0799  | 194.6217  | 59.9318  | -46.1335 | 59.9 | 0.0790 |
| N9    | 185.9374  | 73.3837  | -52.2194 | 73.4 | 0.0845  | 185.6847  | 72.8996  | -51.9845 | 72.9 | 0.0836 |
| B14   | 98.1149   | 31.8959  | 21.264   | 31.9 | 0.0153  | 97.9587   | 32.0247  | 21.3498  | 32.0 | 0.0148 |
| B15   | 97.3596   | 30.042   | -25.1559 | 30.0 | 0.0461  | 97.4224   | 30.2609  | -25.1532 | 30.3 | 0.0455 |
| N23   | 145.5082  | 152.9537 | 101.9691 | 153  | 0.0858  | 145.3956  | 152.0338 | 101.3558 | 152  | 0.0853 |
| N25   | 138.6877  | 123.8527 | -95.4743 | 124  | 0.165   | 138.5219  | 123.4589 | -95.354  | 123  | 0.164  |
| B26   | 95.4269   | 24.5202  | 16.3468  | 24.5 | 0.0190  | 95.3681   | 24.4967  | 16.3311  | 24.5 | 0.0188 |
| B27   | 91.1742   | 37.3905  | 24.9269  | 37.4 | 0.0378  | 91.2579   | 37.4396  | 24.9597  | 37.4 | 0.0374 |
| N30   | 161.2632  | 158.0975 | 105.3983 | 158  | 0.0271  | 161.5839  | 157.4362 | 104.9575 | 157  | 0.0270 |
| N32   | 137.5415  | 123.9205 | -95.2857 | 124  | 0.164   | 137.1152  | 123.3798 | -95.1051 | 123  | 0.163  |
| B34   | 98.1202   | 31.8613  | 21.2408  | 31.9 | 0.0106  | 98.0472   | 31.8984  | 21.2656  | 31.9 | 0.0113 |
| B35   | 91.1867   | 37.1667  | -24.8843 | 37.2 | 0.0380  | 91.2571   | 37.0472  | -24.8098 | 37.0 | 0.0376 |
| B36   | 97.2743   | 29.1577  | -25.5657 | 29.2 | 0.0482  | 97.1641   | 29.2062  | -25.6852 | 29.2 | 0.0482 |
| N38   | 145.7751  | 155.2875 | 103.5251 | 155  | 0.0916  | 145.5096  | 154.5527 | 103.0351 | 155  | 0.0907 |
| B41   | 100.957   | 25.2337  | 16.8225  | 25.2 | 0.0224  | 101.0118  | 25.255   | 16.8362  | 25.3 | 0.0227 |
| N44   | 209.1789  | 55.2595  | 36.8396  | 55.3 | 0.0533  | 208.3245  | 54.1931  | 36.1287  | 54.2 | 0.0516 |
| C48   | 17.9971   | 141.9686 | 94.6457  | 142  | 0.119   | 16.8283   | 144.2606 | 96.1737  | 14.4 | 0.114  |
| O50   | -296.7189 | 985.3377 | 656.8918 | 985  | 0.706   | -302.727  | 993.5176 | 662.345  | 994  | 0.713  |
|       |           |          |          |      |         |           |          |          |      |        |

pharmacology and drug delivery instead of the other nanocompounds.

#### **REFERENCES**

Atkins PW, Friedman RS (1997). Molecular Quantum Mechanics. Oxford. xvii + 545 pp.
Baylor LR, Merkulov VI, Ellis ED, Guillorn MA, Lowndes DH,

Becke AD (1992). Density functional thermochemistry I. The effect of the exchange only gradient correction. J. Chem. Phys., 96:2155-2160.

Becke AD (1993). Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98: 5648-5652.

Bethune DS, Klang Ch, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature (London), 363: 605-607.

Billing GD, Mikkelsen KV (1997). Advanced Molecular

Dynamics and Chemical Kinetics. John Wiley & Sons, New York, pp 1-288.

Bourgeois L, Bando Y, Han WQ, Sato T (2000). Structure of boron nitride nanoscale cones: Ordered stacking of 240° and 300° disclinations. Phys. Rev., B 61: 7686

Depres J, Daguerre E, Lafdi K (1995). Flexibility of graphene layers in carbon nanotubes. Carbon, 33: 87.

Donald BR, Martin J (2009). Progress in Nuclear Magnetic Resonance Spectroscopy, 55: 101-127.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,

- Cheeseman JR, Zakrzewski VG, Montgomery JA Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komáromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998). GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburgh, PA.
- lijima S (1991). Helical microtubules of graphitic carbon. Nature (London), 354: 56.
- lijima S Ichihashi T (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature (London), 363: 603.
- lijima S, Brabec CJ, Maiti A, Bernholc J (1996). Structural flexibility of carbon nanotubes. J. Chem. Phys., 104: 2089.
- lijima S, Ichihashi T, Ando Y (1992). Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature (London), 356: 776
- Kaupp M, Bu"hl M, Malkin VG (2004). Calculation of NMR And EPR Parameters: Theory and Applications. Wiley-VCH: Weinheim, Germanv.
- Kroto HW, Heath JR, OBrien SC, Curl RF Smalley RE (1985). C<sub>60</sub>:uckminsterfullerene. Nature (London), 318: 162.
- Melechko AV, Simpson ML, Whealton JH (2002). Field emission from isolated individual vertically aligned carbon Nanocones, J. Appl. Phys., 91: 4602.
- Monajjem M, Ketabi S, Amiri A (2006).Monte Carlo Simulation Study of Melittin: Protein Folding and Temperature Dependence .Russian J. Phy. Chem., 1: 55-62.
- Monajjemi M, Heshmat M, Tahan A, Monajemi H, Mollaamin F (2007). Quantum mechanic study of basis set effect on NMR chemical shielding and Hydrogen bonding of some amino acids in gaseous phase and solvent. The egyption journal of biochemistry and molecular biology. Biannual, 2: 154-179.
- Monajjemi M, Ketabi S, Hashemian Zadeh M, Amiri A (2006). Simulation of DNA Bases in Water:Comparison of the Monte Carlo Algorithm with Molecular Mechanics Force Fields. Biochemistry (Moscow), 71: S1-S8
- Monajjemi M, Lee VS, Khaleghian M, Honarparvar B, Mollaamin F (2010). Theoretical Description of Electromagnetic Non bonded Interactions of Radical, Cationic, and Anionic NH2BHNBHNH2 Inside of the B18N18 Nanoring. J. Phys. Chem., C.114: 15315–15330.

- Monajjemi M, Rajaeian E, Mollaamin F, Naderi F, Saki S (2008). Investigation of NMR shielding tensors in 1,3 dipolar cycloadditions: Solvents dielectric effect. Phy. Chem. Liquids, 46: 299-306.
- Monajjemi M, Sayyadia R, Ghasemi G, Kalateh Kh, Nouria A, Naderi F (2005). Bond Energies and Phosphate-Coordination of Magnesium dTMP) and NMR Shielding Tensors. Main Group Metal Chemistry, 28: 247-263
- Hydrate to Pyrimidine Nucleotide 5'-Monophosphates (CMP, UMP, Otting G, Liepinsh E (1995). Acc. Chem. Res., 28: 171-177.
- Parr RG, Yang W (1989). Density Functional Theory of Atoms and Molecules. Oxford, New York. IX + 333 pp.
- Qu CQ, Qiao L, Wang C, Yu SS, Zheng WT, Fu YZ, Jiang Q (2008). First-principles density-functional calculations on the field emission properties of BN nanocones. Solid State Commun., 146: 399.
- Rubio A, Corkill JL, Cohen ML (1994). Theory of graphitic boron nitride nanotubes. Phys. Rev., B 49: 5081.
- Sattler K (1995). Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon, 33: 915–920.
- Song SN, Wang XK, Chang RPH, Ketterson JB (1994). Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys. Rev. Lett., 72: 679.
- Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K (2000). Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett., pp. 324:359.
- Yakobson BI, Smalley RE (1997). Fullerene Nanotubes: C<sub>1,000,000</sub> and Beyond. Am. Sci., 85: 324.
- Zhi C, Bando Y, Tang C, Golberg D (2005). Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev., B 72: 245419.