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Three-dimensional flow of non-Newtonian fluid induced by a stretching surface has been studied. The 
constitutive equations of Maxwell fluid are used. The surface possesses convective boundary 
conditions. Computations have been carried out for the non-linear problem. Convergence of the 
obtained solutions is discussed. Impact of the influential parameters involved in the heat transfer 
analysis is emphasized. Comparison with the previous results is shown. It is found that effects of 
Deborah and Biot parameters on the Nusselt number are opposite. The Prandtl and Biot numbers have 
qualitative similar impact on the Nusselt number. 
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INTRODUCTION 
 
Interest of researchers in the flows of non-Newtonian 
fluids is increased during the last few years. This is 
because of their several practical applications in industry 
and technology. Fluids belonging to this category include 
drilling muds, shampoo, ketchup, cement, sludge, 
grease, granular suspension, aqueous foams, slurries, 
paints, food products, paper pulp, plastics and several 
others. No doubt, the additional rheological parameters in 
the constitutive equations of such fluids present more 
complicated and higher order governing equations than 
the Navier-Stokes equations. To obtain analytical/ 
numerical solutions to such equations is not an easy task. 
Even then several scientists are making considerable 
efforts just to understand the flow characteristics of non-
Newtonian fluids (Sapna; 2009; Yang and Zhu, 2010; 
Wang and Tan, 2011; Jamil and Fetecau, 2010; Nazar et 
al., 2010; Ziabakhsh et al., 2010; Hayat and Qasim, 
2010; Ahmad and Asghar, 2011; Pakdemirli et al., 2011; 
Hayat et al., 2011; Rashidi et al., 2011; Iyengar and Vani, 
2011) and many references therein. 

The   study  of  boundary  layer  flows  generated  by  a 
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stretching surface has key importance in several 
engineering processes. An example of stretching surface 
is a polymer sheet of filament extruding continuous from 
a die. The cooling of large metallic plate in a bath (which 
may be an electrolyte) is another example which belongs 
to this category. More, the occurrence of the stretched 
flows is obvious in paper production, glass blowing, melt 
spinning, wire drawing etc. The boundary layer flows of 
non-Newtonian fluids in the presence of heat transfer 
have relevance in food engineering, petroleum pro-
duction, power engineering and in industrial processes 
including polymer melt and polymer solutions used in the 
plastic processing industries. Some recent studies on the 
topic can be seen in Labropulu et al. (2010), Sahoo 
(2011), Mustafa et al. (2010), Hayat et al. (2011), Rashidi 
et al. (2011), Hayat et al. (2011), Makinde and Aziz 
(2011), Sahoo and Poncet (2011), Abbas et al. (2010), 
Hsiao (2011) and Hayat et al. (2011). It is noted that most 
studies in the literature discussed the two-dimensional 
boundary layer flows when heat transfer characteristics 
are restricted to two boundary conditions of either 
prescribed temperatures or heat flux at the surface. Very 
recently, Aziz (2009) examined the Blasius flow subject to 
convective boundary condition. Few more attempts 
addressing this issue have  been  presented  by  Makinde  
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and Aziz (2010), Merkin and Pop (2011), Yao et al. 
(2011) and Hayat et al. (2011). Having such in mind, the 
present study addresses the two focal points. First is to 
consider the three-dimensional flow over a stretching 
surface. Second generalization is concerned with the 
boundary condition when the bottom surface of sheet is 

heated by convection from a hot fluid (at temperature fT ) 

which provides a heat transfer coefficient hf. The 
rheological equations of Maxwell fluid are considered. 
This model is able to predict the relaxation time effects. 
This paper is organized as follows: the relevant equations 
that consist of the solution of expressions by homotopy 
analysis method (HAM) (Liao, 2003; Vosughi et al., 2011; 
Hayat et al., 2011; Yao, 2009; Rashidi and Pour, 2010; 
Abbasbandy and Shirzadi, 2010; Hayat et al., 2010; 
Nadeem et al., 2010;   Iqbal et al., 2011)      and      many 
 
 
 

 
 
 
 
references therein. The convergence of developed 
solutions and related discussion are given; a comparative 
study between the present and previous solution is also 
made. 
 
 
GOVERNING PROBLEMS 

 
We consider the steady three-dimensional flow of an 

incompressible fluid over a stretched surface at .0z  The flow 

takes place in the domain .0z  The ambient fluid temperature is 

taken as T   while the surface temperature is maintained by 

convective heat transfer at a certain value fT . The governing 

boundary layer equations for three-dimensional flow of Maxwell 
fluid are: 
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where the respective velocity components in the  ,x    y   and  

z  directions are denoted by  ,u    v  and w  ,   shows the 

relaxation time, T , the fluid temperature;  , the thermal 

diffusivity of the fluid; )/(    , the kinematic viscosity;    , 

the dynamic viscosity of fluid;   , the density of fluid. 

The boundary conditions appropriate to the flow under 
consideration are: 
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where  k   indicates the thermal conductivity of fluid and  a   and  

b   have dimension inverse of time. 

Using the following new variables: 
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Equation 1 is satisfied automatically and Equations 2 to 7 give 
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where a 
 is the Deborah number, a

b  is a parameter, 


Pr  is the Prandtl number,  ak

h     is the Biot number 

and prime shows the differentiation with respect to   . 

The expression for local Nusselt number with heat transfer  qw   

is 
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In dimensionless form, the above equation can be written as 
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in which  /Re uxx   is the local Reynolds number. 

 
 
SERIES SOLUTIONS 

 

The initial approximations and auxiliary linear operators for 
homotopy       analysis         solutions          are          chosen        as 
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We note that the auxiliary linear operators in Equation 16 satisfy the 
following properties 
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where iC  )81( i  are the arbitrary constants. 

The associated zeroth order deformation problems can be written 
as 
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Here, p  is an embedding parameter,  ,fh    gh   and  h   are 

the non-zero auxiliary parameters and  ,fN   gN  and N  

indicate the non-linear operators. For 0p  and 1p  , we 

have 
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where the convergence of above series strongly depends upon  

,fh    gh   and  .h   Considering that  ,fh   gh  and h  are 

selected properly so that Equations 26 to 28 converge at 1p  

therefore, 
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The mth order deformation problems are 
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Solving the corresponding mth order deformation problems we 

have, 
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in which the  ,mf    


mg   and  


m   indicate the special solutions. 

 
 
CONVERGENCE ANALYSIS AND DISCUSSION 
 
Obviously, the Equations 29 to 31 consist of the auxiliary 

parameters ,f  g  and  . These parameters have a 

key role to adjust and control the convergence of 

homotopic solutions. The   curves have been 

sketched at 18th
 order of approximations to determine 

the suitable ranges for  ,f  g   and   . From Figures 

1 to 3, it is noted that the range of admissible values of  

,f  g  and   are ,30.030.1  f  

25.030.1  g   and  .45.040.1    We 

observed that (Table 1) our series solutions converge in 

the whole region of   when  90.0 gf    and  

.00.1   

Figures 4 to 12 show the behaviors of Deborah number  

,  Prandtl number Pr  and Biot number   on 

temperature )(  for different cases when ,0.0  

5.0  and .0.1  Variations of 
Pr,  and   are shown in 

Figures 4 to 6 when .0  It is seen that an increase in 

Prandtl number Pr  shows a decrease in the temperature 
of fluid and the thermal boundary layer thickness (Figure 
4). Physically, an increase in Prandtl number leads to an 
increase in thermal diffusivity due to which the tempera-
ture and thermal boundary layer thickness decrease. 
Figures 5 and 6 show the variations of Deborah and Biot 
numbers. We conclude from these Figures 5 and 6 that 
both the temperature profile and thermal boundary layer 
thickness increase when Deborah and Biot number 
increase. The Deborah number involves the relaxation 
time due to which the temperature at the wall increases. 
The wall temperature increase with the increase of Biot 
number and it is expected that the convective boundary 
condition becomes the prescribed wall temperature when 
Biot number goes to infinity. It is also noted that the fluid 
temperature is zero when the Biot number is zero. The 

effects of 
Pr,  and   on temperature are displayed in 

the Figures 7 to 9 for  .5.0  The plotted Figures 7 to 

9 show that results for 0  and 5.0  are similar in 

a qualitative sense.  
  The only change here that we noted is in the variation 

of .  This can be seen by comparing Figures 5 and 8. 

The variation in temperature for the case 5.0  is a bit 

smaller than .0  Similar observations are noted in 

Figures 10 to 12. Table 1 presents the convergence of 
homotpic solutions. From this Table 1, it is concluded that 

we need 
th20  terms for velocity and 

th25  order iterations 

for the temperature for a convergent series solutions. 
Table 2 is prepared for the comparison between HAM 
results and previous existing results in a limiting case for 

various values of .  Also Table 2 shows that the skin-

friction coefficient in viscous fluid increases when 
stretching parameter is increased. One can see that our 
homotopic results have an excellent agreement with the 
exact and homotopy perturbation (HPM) results in a 
viscous fluid. Numerical values of local Nusselt number 

are analyzed in Table 3. The values of )0(   

decreases by increasing Deborah number and it also 
increases by increasing Prandtl number and Biot number. 
It is further observed that Nusselt number is an 

increasing function of the stretching parameter .  In 

summary, the effect of stretching parameter and Prandtl 
number are qualitatively similar. More, the Deborah 
number has opposite effect on the Nusselt number when 
compared with stretching parameter and Prandtl number.



 
 
 
 

 
 

Figure 1. ℏ-curve for the function f. 
 
 
 

 
 

Figure 2. ℏ-curve for the function g. 
 
 
 

 
 

Figure 3. ℏ-curve for the function θ. 
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Table 1. Convergence of series solutions for different order 

of approximations when ,4.0  ,5.0    

,0.1Pr   ,6.0  9.0 gf   and  

.0.1   

 

Order of 
approximations 

-f′′(0) -g′′(0) -θ′(0) 

1 1.232500 0.518750 0.339844 

10 1.266203 0.536286 0.318905 

15 1.266214 0.536300 0.318769 

20 1.22615 0.536301 0.318754 

25 1.22615 0.536301 0.318752 

30 1.22615 0.536301 0.318752 

35 1.22615 0.536301 0.318752 

 
 
 

 
 
Figure 4. Influence of Pr on θ(η) when β = 0.0.           

 
 
 

 
 
Figure 5. Influence of β

*
 on θ(η) when β = 0.0. 
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Fig. 3:curve for the function 
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Figure 6. Influence of γ on θ(η) when β = 0.0. 

 
 

 

 
 
Figure 7. Influence of Pr on θ(η) when β = 0.5. 

 
 

 

 
 

Figure 8. Influence of β
*
 on θ(η) when β = 0.5. 

 
 
 
 

 
 
Figure 9. Influence of γ on θ(η) when β = 0.5. 

 
 
 

 
 

Figure 10. Influence of Pr on θ(η) when β = 1.0.  
 
 
 

 
 
Figure 11. Influence of β

*
 on θ(η) when β = 1.0. 

 

Fig. 6:Influence ofonwhen0.0
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Figure 12. Influence of γ on θ(η) when β = 1.0. 

 
 

 

Table 2. Comparison for the different values of     by HAM, HPM and exact solutions 

with Ariel (2007). 

 

β 
Ariel (2007) Ariel (2007) HAM 

-f′′(0) -g′′(0) -f′′(0) -g′′(0) -f′′(0) -g′′(0) 

0.0 1.0 0.0 1 0 1.0 0.0 

0.1 1.02025 0.06684 1.020259 0.066847 1.020260 0.066847 

0.2 1.03949 0.14873 1.039495 0.148736 1.039495 0.148737 

0.3 1.05795 0.24335 1.057954 0.243359 1.057955 0.243360 

0.4 1.07578 0.34920 1.075788 0.349208 1.075788 0.349209 

0.5 1.09309 0.46520 1.093095 0.465204 1.093095 0.465205 

0.6 1.10994 0.59052 1.109946 0.590528 1.109942 0.590529 

0.7 1.12639 0.72453 1.126397 0.724531 1.126398 0.724532 

0.8 1.14248 0.86668 1.142488 0.866682 1.142489 0.866683 

0.9 1.15825 1.01653 1.158253 1.016538 1.158254 1.016539 

1.0 1.17372 1.17372 1.173720 1.173720 1.173721 1.173721 
 

 
 

Table 3. Values of local Nusselt number  )0(    for 

the different values of the parameters  ,       and  

Pr   when  6.0  . 

 

β
*
 β Pr -θ′(0) 

0.0 0.5 1.0 0.33040 

0.3   0.32160 

0.8   0.30799 

1.2   0.29873 

0.4 0.0  0.28908 

 0.4  0.31664 

 0.7  0.33017 

 1.0  0.34070 

  0.7 0.28279 

  1.2 0.34042 

  1.6 0.36840 

  2.0 0.38887 
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