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In water distribution systems, the challenge was always to develop reliable models for predicting the 
failures for each individual pipe in their lifetime to keep the system reliable. The ability of predicting the 
pipe failure is one of the most important fundamentals for the effective rehabilitation strategy. 
Statistical methods are the most used techniques in this field. The prediction accuracy reflects the 
reliability of the proactive rehabilitation strategies. This article introduces a simple technique to 
improve and enhance the accuracy of non-linear multiple regression prediction models. The method 
proposed was applied to predict the number of pipe breaks using 7 predictors for actual water 
distribution system, where a performance improvement of 4.6% was yielded to the prediction model. 
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INTRODUCTION 
 
Reliable water distribution systems (WDSs) should be 
able to provide the consumers with the amount of flow 
under a pressure not less than as designed. Otherwise, 
the system is unreliable. To keep and improve the 
performance or reliability of WDSs, notably meeting 
pressure, flow requirements and water quality standard-
sare a major asset for the well-maintained WDSs by 
continuous monitoring and maintenance. However, 
WDSs deteriorate over time. The deterioration or failure 
of pipes in urban WDSs presents a major challenge to 
water utilities throughout the world, which may result in a 
reduction in the water carrying capacity of pipes and lead 
to substantial repair costs. 

To date, several studies on modeling of deterioration 
have been reported to model the failure of water pipes 
and the effects of the factors that control deterioration. 
Each of them considered different techniques and 
parameters in searching for more realistic deterioration or 
failure rate predictions (Kleiner et al., 2010). The intent 
has always been the provision of much-accuracy on 
piping failures prediction to operators of water distribution 
networks so that they can arrive at intelligent “repair-or-
replace” decisions to keep the system reliable (Tabesh et  
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al., 2009; Christodoulou and Deligianni, 2010). 
Pipe deterioration usually results from a combination of 

several factors as shown in Figure 1. Each of these 
factors has a certain influence on the likelihood of pipe 
failure. The most influential factors in pipe failure can be 
classified as: (1) pipe characteristics including type of 
pipe material, diameter, length, roughness and age, (2) 
environmental characteristics consisting of type of soil 
and climate conditions, (3) operating characteristics of 
the network including pressure variations and (4) manu-
facturing and installations codes. The influences of these 
factors are location specific. Consequently, themodeling 
of this event becomes very complex due to the high 
variability in failure patterns between different water 
distribution networks, and also among the pipes of a 
given network, in addition to weak correlation between 
some influential factors, non-linearity and difficulty to 
express some of the parametric relationship of these 
factors mathematically. 

Prediction in general is completely dependent on 
inspection of the existing status of the system and 
analyzing of past records. Considering the complicated 
composition and different characteristics of pipes in 
WDSs, direct inspection or physical modelingis often 
prohibitively expensive for all, since it requires a sub-
stantial amount of data to represent specific conditions 
and environments, especially if  every  pipe  in  a  system  
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Figure 1. The major influential factors of pipes break. 
 
 
 
is aimed(Lawalet al., 2011; Kai and Hua, 2011; Mukhlisin 
et al., 2011; Ömer, 2011). These data are either 
unavailable or very costly to obtain for even a modest 
portion of a distribution network (Kleiner et al., 2009). 

Using the assumption that any historical patterns are 
very likely to continue in the future (if there is no much 
variety in the general conditions); the predictive models of 
failure are usually based on identifying breakage pattern 
using statistical techniques. Identification of breakage 
patterns over time is an effective and inexpensive 
alternative to physical modeling. In this case, historical 
records and information related to each failure event 
become a suitable failure rate function used in modeling 
the failure pattern. Therefore, statistical models can deve-
lop empirical relationships between the pipe, its exposure 
to the external and operational environments and its 
observed failure frequency, and these statistically derived 
models can be applied with various levels of input data 
and may thus, be useful for minor water mains for which 
there are few data available (Park et al., 2008; Ekinci and 
Konak, 2009; Kleiner et al., 2010). 

Statistically, there are many methods can be used for 
prediction. These methods can be classified into deter-
ministic and probabilistic regression techniques according 
to the number of predictors that can be modeled, how 
data is managed in individual cases or in groups and 
thenature of occurrence of the event being modeled, 
uniformly or randomly distributed (Bubtiena et al., 2011). 
The problem can be modeled deterministically  when  the 

 
 
 
 
relationship of the parameters being modeled are known, 
ignoring any probability of different event sequences and 
the models are constructed for a condition of assumed 
certainty, and each input is determined exactly (Mahdi et 
al., 2011). In the deterministic models constructed for 
pipe breakage, limited number of break influential factors 
is usually considered, in addition, the pipes are classified 
into homogenous groups according to the considered 
influential factors and the breaks are implicitly assumed 
uniformly distributed along all the water pipes. Therefore 
the results of these kinds of models were for pipes group 
levels (Kleiner at el., 2001). 

The regression based models used in modeling the 
pipe breakage are exponential regression analysis and 
linear regression analysis. This kind of analysis was first 
used in pipe breakage modeling (Shamir and Howard, 
1979). They used exponential regression analysis to 
quantify the effects of pipe age upon breaking rate. In 
addition to the age, Walski and Pelliccia (1982) added the 
pipe casting and diameter, and they discriminated 
between first break and subsequent breaks to the model 
in Shamir and Howard (1979) study. Clark et al. (1982) 
used two phase model, multivariate linear regression to 
predict the time to the first break and multivariate expo-
nential regression to predict the number of subsequent 
breaks.  

In linear regression, they used diameter, absolute 
pressure, length and pipe’s material in addition to the 
industrial and residential development overlaying pipes, 
as independent variables. In exponential regression, they 
used pipe’s age, surface area and length of pipe in low 
and moderately corrosivity soil and surface area of pipe 
in highly corrosive soil. More recently, Park et al. (2008) 
used a log-linear and power law process (Weibull 
process) to model failure rates and estimate the econo-
mically optimal replacement time of individual pipes in a 
water distribution system. Ekinci and Konak (2009) 
presented and compared applications of the log-linear 
method and the power law process for modeling pipe 
failure rates. Kleiner et al. (2010) used Non-homo-
geneous Poisson process (NHPP)-power lawto predict 
the breakage pattern of individual pipes considering three 
dynamic factors: the freezing index, the cumulative rain 
deficit and the snapshot rain deficit. 

In linear regression, the relationship between two 
variables is modeled by minimizing the sum of the 
squared errors to fit a straight line to a set of data points. 
One or morevariable is considered to be an explanatory 
variableor predictor and the other is considered to be a 
dependent variable or predicted, time-linear regression 
modeling have been used in modeling the water pipes 
breakage, e.g. Kettler and Goulter (1985) used pipes age 
as independent variable to predict the pipes break, they 
found linear increment in pipe breaks with time. Jacobs 
and Karney (1994) used pipe lengths and age as 
independent predictor to find the probability of a day with 
no   breaks    in    a   linear   relationship.   They   adopted  



 
 
 
 
clustering concept, so they applied their modeling on 
three homogenous age based groups of cast iron pipes. 
Despite the fact that regression models are standard 
models for statistical time series methods for forecasting 
and prediction (El Shafie et al., 2009a); nevertheless, all 
those models were suffering from low correlation 
between the prediction values and the observed values. 

Regression based predictive models used widely in 
plans for development as well as in strategies for rehabi-
litation are used for example, to estimate the population, 
demands and the resources to allow plans to be made 
about possible developments. In literature, Arayesh 
(2011) used a multi-variable regression by means of 
backward method to evaluate the cumulative effect of 
people participation in protecting, revival, development 
and use of natural resources. Meanwhile, 
Malakmohammadi (2011) evaluated the educational 
applicability and behavioral research to develop realistic 
research outcomes based on regression techniques. Re-
gression analysis in quality evaluation and performance 
monitoring has been conducted (Shariati, 2010; Mugisha, 
2008). Other techniques, such as notably artificial neural 
networks (ANN), use regression tool in their prediction 
(Razavi et al., 2011). 

Thisarticle aimed to improve the prediction of water 
pipe failure using the regression modeling to sustain the 
reliability of WDS, while the aforementioned efforts used 
a limited number of predictors, in this article, a multiple 
regression analysis for seven predictors has been used 
to predict the pipe breakage. Although, they are intrinsic-
cally non-linear parameter estimation problem, they are 
converted into a linear relationship using variable 
transformation technique, where the parameters entered 
into the formula as simple multipliers of terms that are 
added together.The results showed the ability of the 
multiple regressions to include this number of predictors, 
and then a technique to improve the prediction is 
introduced as well. 
 
 
Multiple regression modeling 
 
Multiple regressions are a general fitting procedure to 
model the relationship between a dependent (f), and an 
independent variables (X1, X2…Xn) are used for 
prediction. The general form of these models is: 
 

,         (1) 
 
where ß0,ß1, ß2,…,ßn are the regression coefficients. The 
strength of the model lies in the regression coefficients; 
they represent the weight of contribution of each 
independent variable (Xn) in the prediction of the 
dependent variable (f), and they are estimated using loss 
functions. Least squares estimation is one of loss 
functions aims at minimizing the sum of squared 
variations of the actual values of the dependent variable 
from those predicted by the model.  However,  no  perfect  

Bubtiena et al.          6027 
 
 
 
prediction can be obtained and usually there is 
substantial difference between the actual (y) and the 
predicted values(f). The limited prediction accuracy is 
attributed to the large number of uncertain and inter-
related parameters that affect the prediction process and 
the need for a relatively large database to establish a 
reliable model (El Shafie et al., 2009b). This variation or 
prediction error is known as the “residual”. The fitness of 
the model is dependent on this residual and is measured 
using coefficient of determination (R2). One form of R2 is: 
 

,                                              (2) 

 
In which 
 

,            (3) 
 

,             (4) 
 

 ,             (5) 

 
where SStot is the total sum of squares and SSerr is the 
sum of squares of residuals. yi and fi are the observed or 
actual and the predicted values, respectively. n is the 
number of observations values. is the mean of the 
observed values. 

Least squares estimations assume the residual 
variance around the regression line is the same across all 
values of the independent variable. In some applications, 
this assumption is unrealistic. In this case, weighted least 
squares estimation is used instead. In some applications, 
e.g. failure prediction, where the goal is to compute the 
probability of the specific dependent variable to occur, in 
this case, maximize/minimize likelihood or log-likelihood 
function is the suitable technique to estimate the model 
fitness. The larger the likelihood, the larger is the 
probability of the dependent value to occur and the better 
the fit of the model.  

In many cases, the regression model refuses to be fit to 
the data and the iterative procedure fails to converge. In 
such cases, there are many algorithms and criteria that 
can be used for minimizing the loss functionsto find the 
best fitting set of coefficients. Specifying some start 
values, initial step sizes and a criterion for convergence is 
one method. Other algorithm is quasi-Newton that 
approximates the second derivatives of the loss function 
to guide search for the minimum. Some methods use 
penalty functions and constraining parameters, for 
instance, 0 values for logistic regression. Simplex 
procedure is another algorithm that relies on the 
evaluation of the loss function at each of the iteration. 
Hooke-Jeeves pattern moves is a simple algorithm 
usually used when the quasi-Newton and Simplex 
methods fail to produce reasonable estimates. 
Rosenbrock pattern search method often succeeds when  
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other methods fail (Draper et al., 1998). This method 
works by rotating the coordinates of the coefficients 
space and align one axis with a ridge and the other axes 
remain orthogonal to this axis. Other methods use the 
second order derivatives, such as Hessian matrix and 
standard errors. In this method, the coefficient is 
estimated according to the value of the second order 
derivative. 

Finally and after estimating the regression coeffi-
cients, it becomes necessary to examine the fitness of 
the overall model. In this regard, there are many 
methods. Plotting actual values versus predicted values 
is one way to inspect the appropriateness of the model. 
Correlation coefficient, mean square error (MSE) and 
coefficient of determination (R2) are used widely as 
performance evaluation of the predictive model fitness 
(El-Shafie, 2011a). Testing the normality of the residuals 
by plotting them on probability paper indicates fitness of 
the model. Finally, plotting the fitted model using the final 
coefficients estimates is a useful way to examine the 
models involving two or three independent variables.  

In this article, we introduce a simple technique to 
improve the pipe breakage prediction that resulted from a 
multiple regression model regardless of the type of 
regression model and the loss function used to estimate 
the model fitness. This technique has been applied on a 
real water distribution system of the city of Benghazi, 
where a considerable prediction improvement has been 
shown.   
 
 
METHODOLOGY 

 
Many non-linear relationships, such as hyperbolas, exponential, 
power functions, logarithmic functions, polynomial, exponential 
models with a polynomial exponent and other special functions can 
be converted into linear relationship using variable transformation 
technique (Kutner et al., 2004). However, there are some other 
functions that cannot be linearized. They are intrinsically non-linear 
parameter estimation problem. The case study is a real example of 
linearizable function. The origin logarithmic function is: 
 

     (6) 

 
However, the parameters entered into the formula as simple 
multipliers of terms that are added together in linear form as: 
 

,           (7) 

 
where  
 

 
 
The fitness of the predictive model (high R2) started with the proper 
selecting to the quantity and quality of the predictor variables. 
However, all statistical softwares provide automated variable 
selection procedures in this regard. Among these procedures are 
backward elimination, forward selection and stepwise regression. 
Nevertheless, this automated selection should be experience based 
assessed.   Stochastic  models  are  always  established  based  on  

 
 
 
 
correlation analysis (El-Shafie et al., 2008). Cross validation is one  
way to select the best model, studying the cross-correlation 
sequences, provides information about the mutual correlation 
between two consecutive time series (El Shafie et al., 2011b), 
where this method describes how well each observation or actual is 
predicted when all the observations except the one that is used to 
fit the model. In summary, the best fitting model is the one with the 
smallest value of the predicted residual sum of squares. Therefore, 
examining the normality assumption of residuals is important to 
evaluate the model fitness. Eliminating the outliers is one way to 
improve the normality of the residuals and hence, the model fitness. 
However, the normality assumption is not as important as the 
assumption that the model provides a good approximation for the 
true relationship between the predictors and the mean of f 
(Strobach, 1990). 

The proposed method is applied after the prediction values have 
been obtained from the best fit model (Equation 7). Then, the 
improved predicted values can be obtained from: 
 

          (8) 

 

.                                                                           (9) 

 
in which, the residual modeled is added with thepredicted values, 

whereris the modeled or regressed residual,  is the improved 

prediction for each case,  are respectively the slope and 
the intercept of the fit line and f is the predicted value. 
 
 
Method application 
 
The method proposed is applied on the real data of WDS. In this 
case, a pipe breakage is aimed to be predicted. WDS consists of 
418 segments of pipes with a total length of 373.147 km and 
diameters varying from 150 to 2,500 mm. A total of 36.4% of the 
pipes are 300 mm in diameter and 27.4% are 400 mm in diameter; 
the other diameters are distributed as shown in Figure 2. In terms of 
materials, about 34% of the pipes are made of uncoated steel and 
ductile iron pipes account for about 56% of the total length; 
meanwhile, concrete pipes make up about 10%. About 25% of the 
system is more than 36 years old, about 20% is 24 years old and 
30% is 5 years old; the rest of the system is about 27 years old on 
average. The system is supplied from two different sources with 
different water quality. The soil type in the area of study varied 
between clay and sandy clay. The corrosion is the main problem for 
these pipes and the other components of the system. The 
degradation of the network has made it unable to provide safe 
potable water for domestic use, adequate quantities of water at 
sufficient pressure for fire protection or water for industrial use, 
which has resulted in major environmental, socioeconomic and 
health problems in the city. Thus, there habilitation has become a 
national obligation. 

The effective rehabilitation, in turn, depends mainly on predictive 
modeling of pipe breakage. Predicting the future number of breaks 
is a platform for any rehabilitation strategy. Moreover, it is important 
to enhance and improve the predictive model to the possible extent 
to assure maximum reliability of the system and saving cost as well.  

Seven predictors: pipe length, diameter, age, pipe material, 
depth, type of soil and water quality are used to predict breakage 
rate of the pipes in the study system. The total number of breaks 
recorded from 2005 until 2009 were considered. Table 1 shows the 
number of breaks observed for each year. The average number of 
breaks per year is 133, with an estimated average break rate of 
about 0.326 break/year/km. 
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Figure 2. The distribution of diameters in the study system. 

 
 
 

Table 1. Number of breaks observed per year. 
 

Year 2005 2006 2007 2008 2009 2010 Total Average Breakage rate 

Number of breaks 90 70 120 130 150 103 663 133 0.326 br/km/yearr 
 
 
 

Table 2. Coding of soil, material and water quality in modeling. 
 

Soil  Pipe material  Water quality 

Severe Non-severe  Ductile Uncoated Concrete  Non-severe Medium Severe 

1 2  1 2 3  1 2 3 
 
 
 
Statistical analysis and correlations between predictors and 
the predicted variable 

 
Once an appropriate historical data set has been selected and 
prepared, it was fully characterized and subjected to a 
comprehensive statistical analysis. Data characterization involved a 
qualitative assessment of seasonal trends of each potential model 
parameter. Non-quantitative predictors, such as type of soil, water 
quality and pipe material are coded as given in Table 2 to facilitate 
the modeling process. Water quality is estimated in each pipe by 
performing source tracing command in the used hydraulic solver 
(EPANET) and all pipes are tagged accordingly. The statistical 
analysis involved the determination of measures of central 
tendency, measures of variation, percentile analysis and 
identification of outliers, erroneous entries and non-entries for each 
data parameter. The parameter estimates, as given in Table 3, 
implied us to eliminate few outliers as given in Table 4, from which 
we could understand the nature of the relationships and 
correlations between the independent variables and the dependent 
variable. These correlations are summarized in Table 5. Table 6 
shows how the correlations have been improved by eliminating the 
outliers.  

RESULTS 
 
Multiple regression analysis 
 
Applying Equation 1, the best combination of the 7 
predictor variables for explaining the variance of a 
dependent variable (pipe breakage) found using 
OpenStat software is: 
 

 (10)                                     

 
where Brpred is the predicted number of breaks and x1, x2, 

x3, x4, x5, x6 and x7 are length (m), diameter (mm), depth 
(m), age (yr), material, type of soil and water quality, 
respectively. 

For all the individual data points observed, their 
predicted values, the residual, the standard error of 
estimate of the predicted score and  the  95%  confidence  
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Table 3. Distribution parameter estimates. 
 

S/N Covariates  Variables Mean Variance Standard deviation Median Minimum Maximum Skewness kurtosis 

1 Length, L (m) 418 892.7 1950007.5 1396.43 633.42 8.67 15020 6.5 53.2 
2 Diameter, D (mm) 418 445.7 76300 276.23 400 150 2500 4.3 24.8 
3 Depth (m) 418 0.575 0.035 0.187 0.6 0.4 1.00 0.852 -0.205 
4 Age (year) 418 26.3 145.52 12.1 32 5 40 -0.904 -0.708 
5 Material 418 1.581 0.278 0.527 2 1 3 0.017 -1.247 
6 Soil type 418 1.289 0.206 0.454 1 1 2 0.932 -1.137 
7 Water quality 418 2.299 0.412 0.642 2 1 3 -0.366 -0.701 
8 Number of breaks, Br 418 1.587 14.479 3.805 3.8 0 66 12.76 207 

 
 
 

Table 4. Eliminating outliers from some variables data. 
 

S/N Covariates  Variables Mean Variance Standard deviation Median Minimum Maximum Skewness kurtosis 

1 Length (m) 403 90.179 285660.76 534.472 600 8.67 2711 1.098 1.365 
2 Diameter (mm) 410 416.585 28917.407 170.051 400 150 1000 1.817 3.118 
3 Number of breaks 415 1.337 2.506 1.583 0.8269 0 10.677 2.612 9.594 

 
 
 

Table 5. Correlation matrix for row data. 
 

 Length (m) Diameter (mm) Depth (m) Age (year) Material Type of soil Water quality Breakage rate 

Breakage rate 0.083 -0.491 -0.644 0.437 -0.224 0.198 0.412 1.000 
 
 
 

Table 6. Correlation matrix without outliers values of length, diameter and breakage rate. 
 

 Length (m) Diameter(mm) Depth (m) Age (year) Material Type of soil Water quality Breakage rate 

Breakage rate 0.233 -0.605 -0.649 0.419 -0.212 0.196 0.423 1.000 
 
 
 
interval of the predicted score are all calculated 
and the fitness of the selected model can be 
examined from the coefficient of determination (R2  

= 0.737). 

These results can be represented graphically by 
drawing the actual values versus the predicted 
values as given in Figure 3, from which we can 
see how quite well the fit between the observed or 

actual and predicted values. The parameters of 
the actual and predicted values are given in Table 
7 and the parameters of the actual versus 
predicted plot are given in Table 8. 



Bubtiena et al.          6031 
 
 
 

0.50 

 
 
Figure 3. Modeling the actual (y) and predicted (y-). 

 
 
 

Table 7. Data parameters of the actual and the predicted values. 
 

Variable Mean Variance Standard deviation 

Actual  0.22 0.02 0.15 
Predicted  0.22 0.02 0.13 

 
 
 

Table 8. The parameters of the actual versus predicted plot. 
 

Correlation Slope Intercept Standard error of estimate Number of good cases 

0.8587 0.74 0.06 0.07 418 
 
 
 
Improvement of the prediction model 
 
It was known that for multiple regression models, plotting 
the residuals against the predicted values or against each 
independent variable also helps to check for potential 
problems. If the residuals appear to fluctuate randomly 
about 0 with no obvious trend or change in variation as 
the values of a particular Xn increase, then no violation of 
assumptions is indicated (Strobach,1990). Now, we intro-
duce that if the residual and the predicted are modeled 
and plotted, the prediction model can be improved. In our 
case study, the correlation between the residual and the 
predicted values can be seen in Figure 4. 

Thus, using Equation 8, Equation 10 becomes: 
 

    

                                                                               (11) 
 
where 
 

                                (12) 
 

 = Improved predicted breaks. 
The  coefficient  of  determination  (R2)   of   the   model  
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Figure 4. Modeling the predicted values and the modeled residual. 

 
 
 

 

 

Actual  

0.50 

 

 
 
Figure 5. Modeling the improved predicted values and actual values. 

 
 
 
becomes 0.9, increment of about 4.6% over the origin 
model is achieved. Figure 5 represents the relationship 
and the correlation for the improved prediction model. 

Figure 6 and Table 9 show a comparison between the 
predicted values obtained  from   the   regression   model, 

depicted as predicted 1, the predicted values obtained 
from the improved prediction model, depicted as 
predicted 2 and the actual values. Table 10 presents 
correlation matrix of the actual values, predicted, 
residual,    modeled    residual,   new   residual   and   the  
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Figure 6. Comparison between the predicted and the actual values. 

 
 
 

Table 9. Comparison of the parameters and correlation of the predictions and the actual. 
 

Correlation (with the actual) 
Predicted 1 Predicted 2 Actual 

0.859 0.900 1.00 

Means 0.223 0.246 0.223 
Standard deviations 0.130 0.124 0.152 

 
 
 
Table 10. Correlation matrix of the actual, predicted, new residual, modeled residual and improved predicted. 
 

 Actual predicted Residual New residual Modeled residual Improved predicted 

Actual    1.000 0.859 -0.512 -0.859 -1.000 0.900 
predicted    0.859 1.000 -0.000 -1.000 -0.859 0.982 
Residual     -0.512 -0.000 1.000 0.000 0.512 -0.111 
new residual    -0.859 -1.000 0.000 1.000 0.859 -0.982 
Modeled residual     -1.000 -0.859 0.512 0.859 1.000 -0.900 
Improved predicted 0.900 0.982 -0.111 -0.982 -0.900 1.000 

 
 
 
obtained improved predicted values. 
 
 
DISCUSSION 
 
In combination, the data characterization and statistical 
analysis assisted to identify the boundaries of the study 
domain as well as potential deficiencies in the data set. In 
order to identify the most relevant variables, variety of 
graphical and  statistical  analysis  are  implemented  and  

from which many causes and reasons can be highlighted:  
 
1. The breaks increase as length of pipes increases. Only 
in this relationship log transforming of both parameters 
were implemented as shown in Figure 7, otherwise the 
nature relationship would not be obvious.  
2. The majority of numbers of breaks are found in 300 
mm pipes (415 breaks) and 400 mm diameter pipes (149 
breaks). This is because 63% of the total network length 
is made of these two sizes. Number of breaks  decreases  
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Figure 7. Relationship between pipes length and number of breaks. 

 
 
 
as the diameter increases. The correlation between these 
two parameters is -0.491. 
3. The breakage rate increases as the depth of the trench 
where the pipes are laid decreases, 67% of the failure 
occurs in pipes at depth of 0.4 m. The correlation 
between failure and depth found is equal to -0.644, which 
is the highest among all the other parameters. This is a 
result of considerable quantity of the smaller sizes pipes 
found in this depth (43% of pipes) which might be close 
to the proximity to traffic loads.    
4. 67% of the failures occur in age between 32 and 40 
years. Although, there are breaks in all ages, starting 
from 5 years old pipes. The correlation between these 
two parameters is 0.437.  
5. Comparing the different pipes material, 58% of failure 
occurs in ductile iron; meanwhile 41% of failure occurs in 
uncoated pipes. This is because ductile iron pipes form 
about 56% of the total length of the pipes. The correlation 
between breakage rate and type of material is -0.224.  
6. 69% of the failure occurs in zones of non aggressive 
soil, where about 71% of the pipes are laid. Therefore, 
the correlation between these two parameters is 0.198. 
7. 89% of the pipes convey moderate to aggressive 
water; therefore, 97% of the failure occurs in those pipes. 
The correlation between breakage rate and water quality 
found is 0.412.  
 
 
Conclusion 
 
This article addressed the prediction of water pipe failure 
using regression analysis modeling and howit can be 
improved. A simple method to improve the pipe breakage 

prediction resulted from multiple non-linear regression 
models and was introduced regardless of the type of 
regression model and the loss function used to estimate 
the model fitness. This method depended on modeling 
the residual with the predicted data, then adding this new 
residual to the regression model. This technique was 
applied on actual water distribution system to predict pipe 
breakage. Seven predictors were modeled and a 
considerable performance improvement of the prediction 
was shown.  
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