Journal of Agricultural Biotechnology and Sustainable Development
Subscribe to JABSD
Full Name*
Email Address*

Article Number - 7E865FB59680


Vol.8(5), pp. 32-45 , July 2016
DOI: 10.5897/JABSD2016.0257
ISSN: 2141-2340



Full Length Research Paper

In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.



Rachel Okeyo-Ikawa*
  • Rachel Okeyo-Ikawa*
  • University of Nairobi, School of Biological Sciences, P. O. Box 30197 – 00100, Nairobi Kenya.
  • Google Scholar
Nelson Onzere Amugune
  • Nelson Onzere Amugune
  • University of Nairobi, School of Biological Sciences, P. O. Box 30197 – 00100, Nairobi Kenya.
  • Google Scholar
Norman Chege Njoroge
  • Norman Chege Njoroge
  • University of Nairobi, School of Biological Sciences, P. O. Box 30197 – 00100, Nairobi Kenya.
  • Google Scholar
Pauline Asami
  • Pauline Asami
  • Biosciences Eastern and Central Africa – International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 – 00100, Nairobi Kenya.
  • Google Scholar
Timothy Holton
  • Timothy Holton
  • Biosciences Eastern and Central Africa – International Livestock Research Institute (BecA-ILRI) Hub, P. O. Box 30709 – 00100, Nairobi Kenya.
  • Google Scholar







 Received: 16 February 2016  Accepted: 29 June 2016  Published: 31 July 2016

Copyright © 2016 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


Cowpeas (Vigna unguiculata) are important grain legumes grown by resource poor farmers across Sub-Saharan Africa. In Kenya, cowpeas continue to produce low yields due to erratic rainfall caused by the current climate change. This study sought to enhance drought tolerance in Kenyan cowpeas through transformation by Agrobacterium tumefaciens using L-Pyrroline-5-carboxylate synthase (P5CS) gene. Cowpea variety K80 was inoculated with Agrobacterium tumefaciens strains EHA105 and LBA4404 harbouring recombinant plasmids pCAMBIA1301:VuP5CS or pCIP100:VuP5CS through vacuum infiltration of pre-germinated seeds at 60 kpa for 25 min. The presence of the transgene in the transformed cowpea plants and its transfer to progeny was confirmed by PCR analysis of T0 and T1 plants. The highest transformation efficiency of 20.5% was achieved with strain EHA105 harbouring plasmid pCAMBIA1301:VuP5CS. A segregation analysis of the transgenes gave a 1:4 ratio for the VuP5CS transformed: non-transformed plants and did not follow the 3:1 Mendelian inheritance pattern for dominant genes. There was no difference in proline content in the transformed and non-transformed T1 plants. However, the roots of the transformed plants were significantly longer than those of the non-transformed plants. The numbers of harvested seeds were also significantly higher in the transformed plants with 10 to 11 seeds per pod in comparison to the non-transformed plants with an average of 5.58 seeds per pod, indicating drought tolerance potential of the transformed plants. The T2 and T3 plants need to be screened further to evaluate the stable integration of the transgene and physiological characterization under water stress.   

Key words: Vigna unguiculata, in planta transformation, Agrobacterium tumefaciens, VuP5CS (Vigna unguiculata pyrroline-5-carboxylate synthase).

Adesoye AI, Machuka J, Togun AO (2008). CRY 1AB transgenic cowpea obtained by nodal electroporation. Afr. J. Biotechnol. 7(18):3200-3210.

 

Adesoye AI, Togun AO, Machuka J (2010). Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J. Appl. Biosci. 30:1845-1860.

 

Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF, Linden CG (2009). Breeding drought tolerant cowpea: Constraints, accomplishments and future prospects. Euphytica 167:353-370.
Crossref

 

Amanullah M (2011). Proteins In: Amanullah M (Ed) Medical Biochemistry and Biotechnology, New central book agency (P) Ltd., Kolkata. 391p.

 

Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011). Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep. 30:2281-2292.
Crossref

 

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant Soil 39:205-207.
Crossref

 

Bent A (2006). Arabidopsis thaliana floral dip transformation method. Agrobacterium protocols. pp. 87-104.
Crossref

 

Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J. 16(60):735-743.
Crossref

 

De Ronde JA, Cress WA, Van der Mescht A (2001). Agrobacterium mediated transformation of soybean (Glycine max) seed with the β-glucuronidase marker gene. South Afr. J. Sci. 97:421-428.

 

Dibax R, Deschamps C, Filho B, Vieira GE, Molinari HBC, De Campos MFK, Quoirin M (2010). Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene. Biol. Plant. 54(1):6-12.
Crossref

 

Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.

 

Fatokun C, Boukar O, Muranaka S, Chikoye D (2009). Enhancing drought tolerance in Cowpea. Afr. Crop Sci. Confer. Proc. 9:531-536.

 

Gazendam I, Oelofse D (2007). Isolation of cowpea genes conferring drought tolerance: Construction of a cDNA drought expression library. Water SA 33:387-391.

 

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12)909-930.
Crossref

 

Higgins TJ, Gollasch S, Molvig L, Moore A, Popelka C, Watkins P, Armstrong J, Mahon R, Ehlers J, Huesing J, Margam V, Shade R, Murdock L (2013). Genetic transformation of cowpea for protection against bruchids and caterpillars. Proceedings of the fifth world cowpea conference pp. 131-137.

 

Ilori CO, Pellegrineschi A (2011). Transgene expression in cowpea (Vigna unguiculata (L.) Walp.) through Agrobacterium transformation of pollen in flower buds. Afr. J. Biotechnol. 10(56):11821-11828.

 

Jefferson RA, Kavanagh TA, Bevan MW (1987). GUS Fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6(13)3901-3907.

 

Karanja J, Nguluu S, Gatheru M (2012). Farm yard manure reduces the virulence of Alectra vogelii (Benth) on cowpea (Vigna unguiculata). Afr. J. Plant Sci. 6(3):130-136.
Crossref

 

Kikkert JR, Vidal JR, Reisch BI (2005). Stable transformation of plant cells by particle bombardment/biolistics. Methods Mol. Biol. 286:61-78.

 

Kimiti JM, Odee DW, Vanlauwe B (2009). Area under grain legumes cultivation and problems faced by small holder farmers in legume production in the semi-arid Eastern Kenya. J. Sustain. Dev. Afr. 11(4)305-315.

 

Kishor PBK, Hong Z, Miao C, Hu CA, Verma DPS (1995). Overexpression of Δ-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387-1394.

 

Kishor PBK, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. 88(3):424-438.

 

Mao JQ, Zaidi MA, Arnason JT, Altosaar I (2006). In vitro regeneration of Vigna unguiculata (L.) Walp. cv. Blackeye cowpea via shoot organogenesis. Plant Cell Tissue Organ Cult. 87:121-125.
Crossref

 

Ogunmodede BK and Oyenuga VA (1970). Vitamin B content of cowpeas (Vigna unguiculata Walp.) II. Pyridoxine, pantothenic acid, biotin and folic acid. J. Sci. Food Agric. 21(2):87-90.
Crossref

 

Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJ (2006). Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgene to progeny. Plant Cell Rep. 25:304-312.
Crossref

 

Popelka JC, Terryn N, Higgins TJV (2004). Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci. 167:195-206.
Crossref

 

Raveendar S, Premkumar A, Sasikumar S, Ignacimuthu S, Agastian P (2009). Development of a rapid, highly efficient system of organogenesis in cowpea, Vigna unguiculata (L.) Walp. South Afr. J. Bot. 75:17-21.
Crossref

 

Saini R, Sonia, Jaiwal PK (2003). Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep. 21(9):851-859.
Crossref

 

Sharma S, Villamor JG, Verslues PE (2011). Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol. 157:292-304.
Crossref

 

Shinozaki K, Shinozaki KY (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115:327-334.
Crossref

 

Singh B, Hartmann P, Fatokun C, Tamo M, Tarawali S, Ortiz R (2003). Recent progress in cowpea improvement. Chronica Hortic. 43(2)8-12.

 

Solleti SK, Bakshi S, Sahoo L (2008). Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J. Biotechnol. 135:97-104.
Crossref

 

Szabados L, Savoure´ A (2009). Proline: a multifunctional amino acid. Trends Plant Sci. 15(2)89-97.
Crossref

 

Tang Y, Chen L, Li XM, Li J, Luo Q, Lai J, Li HX (2012). Effect of culture conditions on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). Afr. J. Biotechnol. 11(14)3270-3275.
Crossref

 

Tardieu F (2012). Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J. Exp. Bot. 63(1)25-31.
Crossref

 

Tshovhote NJ, Nesamvuni AE, Raphulu T, Gous RM (2003). The chemical composition, energy and amino acid digestibility of cowpeas used in poultry nutrition. South Afr. J. Anim. Sci. 33(1):65-69.
Crossref

 

USAID (2010). Staple food value chain analysis: Country rep. Kenya. pp. 150-157.

 


APA Okeyo-Ikawa, R., Amugune, N. O., Njoroge, N. C., Asami, P., & Holton, T. (2016). In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.. Journal of Agricultural Biotechnology and Sustainable Development, 8(5), 32-45.
Chicago Rachel Okeyo-Ikawa, Nelson Onzere Amugune, Norman Chege Njoroge, Pauline Asami and Timothy Holton. "In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.." Journal of Agricultural Biotechnology and Sustainable Development 8, no. 5 (2016): 32-45.
MLA Rachel Okeyo-Ikawa, et al. "In planta seed transformation of Kenyan cowpeas (Vigna unguiculata) with P5CS gene via Agrobacterium tumefaciens.." Journal of Agricultural Biotechnology and Sustainable Development 8.5 (2016): 32-45.
   
DOI 10.5897/JABSD2016.0257
URL http://academicjournals.org/journal/JABSD/article-abstract/7E865FB59680

Subscription Form