Journal of Agricultural Biotechnology and Sustainable Development
Subscribe to JABSD
Full Name*
Email Address*

Article Number - D10CC7366409


Vol.9(5), pp. 36-44 , October 2017
DOI: 10.5897/JABSD2017.0294
ISSN: 2141-2340



Full Length Research Paper

Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation



Dioumacor Fall
  • Dioumacor Fall
  • Institut Sénégalais de Recherches Agricoles, Centre National de Recherches Forestières, Route des Pères Maristes, Dakar-Sénégal.
  • Google Scholar
Niokhor Bakhoum
  • Niokhor Bakhoum
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal.
  • Google Scholar
Fatoumata Fall
  • Fatoumata Fall
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal
  • Google Scholar
Fatou Diouf
  • Fatou Diouf
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal
  • Google Scholar
Mathieu Ndigue Faye
  • Mathieu Ndigue Faye
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal.
  • Google Scholar
Cheikh Ndiaye
  • Cheikh Ndiaye
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal
  • Google Scholar
Valérie Hocher
  • Valérie Hocher
  • Laboratoire des Symbioses Tropicales et Méditerranéennes, Institut de Recherche pour le Développement, Campus International de Baillarguet, 34398 Montpellier, France.
  • Google Scholar
Diégane Diouf
  • Diégane Diouf
  • Laboratoire Commun de Microbiologie, Centre de Recherche de Bel-Air, Dakar-Sénégal
  • Google Scholar







 Received: 01 August 2017  Accepted: 22 September 2017  Published: 31 October 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


This study aimed at selecting an effective microbial inoculum to enhance the performance of Senegalia senegal, Vachellia seyal and Prosopis juliflora and assessing the combination effect of microbial inoculation and peanut shells amendment on their growth under salinity in greenhouse conditions. In the first experiment, seedlings were individually cultivated in plastic bags containing non-sterile sandy soil. Seedlings were inoculated at transplantation with rhizobial and arbuscular mycorrhizal fungi (AMF) strains. Four inoculation treatments were performed: control, inoculation with rhizobia, inoculation with AMF and dual-inoculation with rhizobia and AMF. After one month, seedlings were gradually watered with four saline solutions (0, 86, 171 and 257 mM NaCl) for 4 months. ANOVA showed that inoculation treatments significantly increased seedlings growth particularly in saline conditions and the best performance was obtained with dual inoculation. In the second experiment, seedlings were grown under the same experimental conditions on a mixture of non-sterile sandy soil and 6 tha-1 (169.56 g per bag) of peanut shells var 73-33. Results showed that inoculation, peanut shells and their combination significantly improved seedlings growth. The higher performance was obtained with the combination of microbial inoculation and peanut shells.

 

Key words: Mycorrhiza, rhizobia, organic amendment, Senegalia senegal, Vachellia seyal, Prosopis juliflora, salt tolerance.

Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011). Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J. Appl. Nat. Sci. 3(2):340-351.

 

Asma M, Arshad FA, Sajjad MH (2009). Changes in mineral and mineralizable N of soil incubated at varying salinity, moisture and temperature regimes. Pak. J. Bot. 41(2):967-980.

 
 

Bakhoum N, Ndoye F, Kane A, Assigbetse K, Fall D, Sylla SN, Noba K, Diouf D (2012). Impact of rhizobial inoculation on Acacia senegal (L.) Willd. growth in greenhouse and soil functioning in relation to seed provenance and soil origin. W. J. Microbiol. Biotechnol. 28:2567-2579.
Crossref

 
 

Choudhary OP, Josan AS, Bajwa MS, Kapur L (2004). Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field Crops Res. 87:103-116.
Crossref

 
 

Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, et al. (2013). Use of Frankia and actinorhizal plants for degraded lands reclamation. Biomed. Res. Int. Article ID 948258.

 
 

Diagne O, Ingleby K (2003). Ecologie des champignons mycorhiziens arbusculaires infectant Acacia raddiana Savi. Un arbre au désert. IRD Editions. Paris. pp. 205-2280.

 
 

Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005). Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Funct. Plant Biol. 32:1143-1152.
Crossref

 
 

Diouf D, Fall D, Chaintreuil C, Ba AT, Dreyfus B, Neyra M, Ndoye I, Moulin L (2010). Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated with the promiscuous species Acacia seyal Del. J. Appl. Microbiol. 108(3):818-830.
Crossref

 
 

Evelin H, Kapoor R, Giri B (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104:1263-1280.
Crossref

 
 

Fall D (2016). Contribution à l'amélioration de la tolérance à la salinité de Senegalia senegal (L.) Britton, Vachellia seyal (Delile) P. Hurter et Prosopis juliflora (Swartz) DC par inoculation microbienne et apport de coques d'arachide. PhD Thesis, University Cheikh Anta DIOP of Dakar, P 176.

 
 

Fall D, Diouf D, Neyra M, Diouf O, Diallo N (2009). Physiological and biochemical responses of Acacia seyal (Del.) seedlings under salt stress. J. Plant Nutr. 32:1122-1136.
Crossref

 
 

Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185-190.
Crossref

 
 

Garg N, Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron. Sustain. Dev. 27:59-68.
Crossref

 
 

Gentili F, Huss-Danell K (2002). Phosphorus modifies the effects of nitrogen on nodulation in split-root systems of Hippophaë rhamnoides. New Phytol. 153:53-61.
Crossref

 
 

Gentili F, Huss-Danell K (2003). Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J. Exp. Bot. 54:2757-2767.
Crossref

 
 

Hellsten A, Huss-Danell K (2001). Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.). Acta Agric. Scand. Section B, Soil Plant Sci. 50:135-142.

 
 

Hu Y, Schmidhalter U (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168:541-549.
Crossref

 
 

Jensen ES, Hauggaard-Nielsen H (2003). How can increased use of biological nitrogen fixation in agriculture benefit the environment? Plant Soil 252:177-186.
Crossref

 
 

Kahlown MA, Azam M (2003). Effect of saline drainage effluent on soil health and crop yield. Agric. Water Manage. 62:127-138.
Crossref

 
 

Kohler J, Caravaca F, Roldán A (2010). An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42:429-434.
Crossref

 
 

Ndoye F, Kane A, Diedhiou AG, Bakhoum N, Fall D, Sadio O, Sy MO, Noba K, Diouf D (2015). Effects of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Acacia senegal (L.) Willd. seedling growth and soil enzyme activities in Senegal. Int. J. Biosci. 6(2):36-48.
Crossref

 
 

Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Hocher V, Svistoonoff S, Laplaze L, Tisa LS, Sy MO (2016). Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Frontiers Plant Sci. 7.
Crossref

 
 

Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014). Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9(3):e90841.
Crossref

 
 

Ollivier J, Stefanie TW, Bannert A, Hai B, Kastl EV, Meyer A, Su MX, Kleineidam K, Schloter M (2011). Nitrogen turnover in soil and global change. FEMS Microbiol. Ecol. 78:3-16.
Crossref

 
 

Oo AN, Iwai CB, Saenjan P (2013). Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad. Dev. 26:300-310.
Crossref

 
 

Parniske M (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev. Microbiol. 6:763-775.
Crossref

 
 

Patreze CM, Cordeiro L (2004). Nitrogen fixing and vesicular arbuscular mycorrhizal symbioses in some tropical legume trees of tribe Mimosaceae. For. Ecol. Manag. 196:275-285.
Crossref

 
 

Paul D, Nair S (2008). Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J. Basic Microbiol. 48:1-7.
Crossref

 
 

Paul D (2012). Osmotic stress adaptations in rhizobacteria. J. Basic Microbiol. 52:1-10.

 
 

Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-160.
Crossref

 
 

Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007). Phytoremediation of sodic and saline-sodic soils. Adv. Agric. 96:197-247.
Crossref

 
 

Rabie GH (2005). Influence of VA-mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza 15:225-230.
Crossref

 
 

Rabie GH, Almadini AM (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr. J. Biotechnol. 4:210-222.

 
 

Shahbaz M, Ashraf M (2013). Improving salinity tolerance in cereals. Crit. Rev. Plant Sci. 32:237-249.
Crossref

 
 

Singh N, Samajpati N, Paul AK (2011). Dual inoculation of salt tolerant
Crossref

 
 

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis, 3rd edn. Academic Press, London.

 
 

Soliman AS, Shanan NT, Massoud ON, Swelim DM (2014). Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr. J. Biotechnol. 11:1259-1266.

 
 

Sumner M (2000). Handbook of soil science. Boca Raton: CRC Press. 2148p.

 
 

Thrall PH, Bever JD, Slattery JF (2008). Rhizobial mediation of Acacia adaptation to soil salinity: Evidence of underlying trade-offs and tests of expected pattern. J. Ecol. 96:746-755.
Crossref

 
 

Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization ayant une signification fonctionnelle. Dans: Aspects physiologiques et génétiques des mycorhizes. Dijon 1985. INRA (éd.), pp. 217-221.

 
 

Vincent JM (1970). A manual for the practical study of root- nodule bacteria. International Biological Programme. Handbook no. 15. Blackwell, Oxford.

 
 

Von Maydell HJ (1986). Trees and Shrubs of the Sahel: their Characteristics and Uses. Eschborn, Germany: Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ).

 
 

Wang L, Sun X, Li TS, Zhang W, Zhai P (2014). Application of organic amendments to a coastal saline soil in North China: Effects on soil physical and chemical properties and tree growth. PLoS ONE 9(2):e89185.
Crossref

 
 

Weissenhorn I (2002). Mycorrhiza and Salt Tolerance of Trees. Final Report of Partner 9 EU-project MYCOREM (QLK3-1999-00097). The Use of Mycorrhizal Fungi in Phytoremediation Projects P 36.

 
 

Wong VNL, Dalal RC, Greene RSB (2009). Carbon dynamics of sodic and saline soil following gypsum and organic material additions: A laboratory incubation. Appl. Soil Ecol. 41:29-40.
Crossref

 
 

Zhu RF, Tang FL, Liu JL, Liu FQ, Deng XY, Chen JS (2016). Co-inoculation of arbuscular mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions. Pak. J. Bot. 48(2):763-769.
Crossref

 
 

 


APA Fall, D., Bakhoum, N., Fall, F., Diouf, F., Faye, M. N., Ndiaye, C., Hocher, V., & Diouf, D. (2017). Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation. Journal of Agricultural Biotechnology and Sustainable Development, 9(5), 36-44.
Chicago Dioumacor Fall,, Niokhor Bakhoum, Fatoumata Fall, Fatou Diouf, Mathieu Ndigue Faye, Cheikh Ndiaye, Val&erie Hocher and Di&egane Diouf,. "Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation." Journal of Agricultural Biotechnology and Sustainable Development 9, no. 5 (2017): 36-44.
MLA Dioumacor Fall, et al. "Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation." Journal of Agricultural Biotechnology and Sustainable Development 9.5 (2017): 36-44.
   
DOI 10.5897/JABSD2017.0294
URL http://academicjournals.org/journal/JABSD/article-abstract/D10CC7366409

Subscription Form