Journal of Brewing and Distilling
Subscribe to JBD
Full Name*
Email Address*

Article Number - 0E6313746212


Vol.5(1), pp. 1-9 , July 2014
DOI: 10.5897/JBD2014.0043
ISSN: 2141-2197



Review

Solid wastes in brewing process: A review



Thiago Rocha dos Santos Mathias1*
  • Thiago Rocha dos Santos Mathias1*
  • Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro. Athos da Silveira Ramos, 149, ZIP CODE 21941-909, Rio de Janeiro, RJ, Brazil
  • Google Scholar
Pedro Paulo Moretzsohn de Mello2
  • Pedro Paulo Moretzsohn de Mello2
  • Technology Center of Food and Beverage - SENAI, Nilo Peçanha Street, 85, ZIP CODE 27700-000, Vassouras, Rio de Janeiro, RJ, Brazil
  • Google Scholar
Eliana Flavia Camporese Sérvulo1
  • Eliana Flavia Camporese Sérvulo1
  • Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro. Athos da Silveira Ramos, 149, ZIP CODE 21941-909, Rio de Janeiro, RJ, Brazil
  • Google Scholar







 Received: 03 June 2014  Accepted: 07 July 2014  Published: 30 July 2014

Copyright © 2014 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


A large amount of agro-industrial waste is produced annually around the world from the beneficiated agricultural products or in food industrialization. The disposal of these residues in the environment results in a lot of inconvenience to the ecosystem, due to its significant nutritional value and high concentration of organic compounds that confers a high biochemical oxygen demand to the waste’s degradation. In this context, brewing industry is among these activities, which includes in its production stages the processing and fermentation of vegetable feedstock, such as barley malt and other grains, and hops, generating several by-products. Many factors, such as environmental policies, possible scarcity of non-renewable sources, and problems related to the improper use of renewable raw materials, leads to the development of new processes that could generate less waste or reused those produced in order to add greater value to the residue. This article presents a review of the solid wastes in brewing industry, which are the brewer spent grain, the hot trub, the residual yeast and the diatomaceous earth, describing how they are obtained in the brewery process, their characterization and chemical composition, and the potential applications in bioprocesses technologies. The main fraction common to all revised waste is the protein fraction, in addition to various constituents of interest, such as minerals, carbohydrates and phenolic compounds. The main current applications are in the area of ​​animal feed and human nutrition.

Key words: brewery wastes, brewer spent grain, trub, residual yeast, diatomaceous earth.

Adeniram HA, Abiose S, Ogunsua AO (2010). Production of fungal β-amylase and amyloglucosidase on Some Nigerian Agricultural Residues. Food Bioprocess Technol. 3:693-698.
Crossref
 

Aliyu S, Bala M (2011). Brewer's spent grain: A review of its potentials and applications. Afr. J. Biotechnol. 103(3):324-331.

Academic Journals

 
Bamforth CW (2003). Beer: Tap Into the Art and Science of Brewing. 2 ed. New York: Oxford University Press. 233p.
 
Bamforth CW (2011). Beer A Quality Perspective. Academic Press. 304p.
 
Barchet R (1993). Hot Trub: Formation and removal. Brewing Techniq. 1:4.
 
Bekatorou A, Psarianos C, Koutinas AA (2006). Production of food grade yeast. Food Technol. Biotechnol. 44(3):407-415.
 
Briggs DE, Boulton CA, Brookes PA, Stevens R (2004). Brewing Science and Practice. Flórida: CRC Press LLC and Woodhead Publishing Limited. 863p.
Crossref
 
Butt KR (1993). Utilization of solid paper-mill sludge and spent brewery yeast as a feed soil-dwelling earthworms. Bioresour. Technol. 44:105-107.
Crossref
 
Byung-Gon R, Kyochan K, Jungmin K, Jong-In H, Ji-Won Y (2013). Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresource Technol. 129:351-359.
Crossref
 
Caballero-Cordoba GM, Pacheco MTB, Sgarbieri VC (1997). Composição química da biomassa de levedura integral (Saccharomyces sp.) e determinação do valor nutritivo da proteína em células íntegras ou rompidas mecanicamente. Ciência e Tecnologia de Alimentos. 17(2):102-106.
Crossref
 
Caballero-Cordoba GM, Sgarbieri VC (2000). Nutritional and toxicological evaluation of yeast (Saccharomyces cerevisiae) biomass and yeast protein concentrate. J. Sci. Food Agric. 80:341-351.
Crossref
 
Cancellara WR (2004). Introdução à filtração de cervejas e os auxiliares filtrantes. Revista Meio Filtrante. Ano 3:10.
 
Celus I, Brijs K, Delcour JA (2006). The effects of malting and mashing on barley protein extractability. J. Cereal Sci. 44:203-211.
Crossref
 
Cervesia (2011). Mercado Cervejeiro, available on www.cervesia.com.br.
 
Chae HJ, Joo H, Man-Jin I (2001). Utilization of brewer's yeast cells for the production of food-grade yeast extract. Part 1: effects of diferente enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol. 76:253-258.
Crossref
 
Chanda S, Chakrabati S (1996). Plant origin liquid waste: a resource for single-cell protein production by yeast. Bioresource Technol. 57(1):51-54.
Crossref
 
Chen C, Wang J (2008). Removal of Pb2+, Ag+, Cs+, and Sr2+ from aqueous solution by brewery's wast biomass. J. Hazardous Materials. 151:65-70.
Crossref
 
De-Song T, Gang-Ming Y, Yuan-Zhe H, Song-Qing H, Bing L, Lin L, Hui-Ling L, Borthakur D (2009). Recovery of protein from brewer's spent grain by ultrafiltration. Biochem. Engr. J. 48:1-5.
Crossref
 
Dragone G, Muussato SI, Silva JBA (2007). Utilização de mostos concentrados na produção de cervejas pelo processo contínuo: novas tendências para o aumento da produtividade. Ciência e Tecnologia de Alimentos. 27:37-40.
Crossref
 
Faulds CB, Collins S, Robertson JA, Treimo J, Eijsink VGH, Hinz SWA, Scgols HA, Buchert J, Waldron KW (2009). Protease-induced solubilisation of carbohydrates from brewer's spent grain. J. Cereal Sci. 50:332-336.
Crossref
 
Ferraz AJ, Teixeira JA (1999). The use of flocculating brewer's yeast for Cr (III) and Pb (II) removal from residual wastewaters. Bioprocess Engr. 21:431-43.
Crossref
 
Ferreira MPLVO, Pinho O, Vieira E, Tavarela JG (2010). Brewer's Saccharomyces yeast biomass: characteristics and potential aplications. Trends in Food Sci. Technol. 21:77-84.
Crossref
 
Fillaudeau L, Blanpain-Avet P, Daufin G (2006). Water, wastewater and waste management in brewing industries. J. Cleaner Productn. 14:463-471.
Crossref
 
Gencheva P, Dimitrov D, Dobrev G, Ivanova V (2012). Hydrolisates from malt spent grain with potencial application in the bioethanol production. J. BioSci. Biotechnol. p. 135-141.
 
Gopi KK, Sang HK (2013). Effects of chemical compositions and ansiling on the biogas productivity and degradation rates of agricultural and food processing by-products. Bioresour. Technol. 142:553-561.
Crossref
 
Gregori A, Svageli M, Pahor B, Berovic M, Pohleven F (2008). The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. New Biotechnol. 25(2/3):157-161.
Crossref
 
Gupta S, Jaiswal AK, Abu-Ghannam N (2013). Optimization conditions for the utilization of brewing waste to develop a nutraceutical rich liquid product. Industrial Crops and Products. 44:272-282.
Crossref
 
Hashemi M, Razava SH, Shojaosadati SA, Mousavi SM (2011). The potential of brewer's spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. New Biotechnol. 28(2):165-172.
Crossref
 
Hough JS (1990). Biotecnologia de la Cerveza y de la Malta. Editora Acribia, S.A. Zaragoza, Espana, 187p.
 
Jones AM, Ingledew WM (1994). Fermentation of very high gravity wheat mash prepared using fresh yeast autolysate. Bioresour. Technol. 50:97-101.
Crossref
 
Kaur VI, Saxena PK (2004). Incorporation of brewery waste in supplementary feed and its impact on growth in some carps. Bioresource Technol. 91:101-104.
Crossref
 
Khan AW, Rahman MS, Ano T (2009). Application of malt residue in submerged fermentation of Bacillus subtilis. J. Enviro. Sci. 21:S33-S35.
Crossref
 
Kopsahelis N, Agouridis N, Bekatorou A, Kanellaki M (2007). Comparative study of spent grains and deligniwed spent grains as yeast supports for alcohol production from molasses. Bioresource Technol. 98:1440-1447.
Crossref
 
Kuhbeck F, Muller M, Back W, Kurz T, Krottenthaler M (2007). Effect of hot trub and particle addition on fermentation performance of Saccharomyces cerevisiae. Enzyme and Microbial Technol. 41:711-720.
Crossref
 
Kunze W (1999). Technology Brewing and Malting. 2 ed. Germany: VLB, 726p.
 
Lima UA (2010). Matérias-primas dos Alimentos. São Paulo: Ed Blucher. 402p.
 
Lima UA, Aquarone E, Borzani W, Schmidell W (2001). Biotecnologia Industrial. V.4, Biotecnologia na Produção de Alimentos. São Paulo: Editora Edgard Blucher.
 
Man-Jin I, Dong CK, Chae HJ (2005). Downstream process for the production of yeast extract using brewer's yeast cells. Biotechnol. Bioprocess Engr. 10:85-90.
Crossref
 
Markovic RS, Grujic OS, Pejin JD (2003). Conventional and alternative principles for stabilization of protein and polyphenol fractions in beer. APTEFF. 34:3-12.
Crossref
 
Marques PA, Pinheiro HM, Rosa MF (2007). Cd (II) removal from aqueous solution by immobilized waste brewery yeast in fixed-bed and airlift reactors. Desalination 214:343-351.
Crossref
 
Marques PA, Pinheiro HM, Teixeira JA, Rosa MF (1999). Removal of Cu2+, Cd2+ and Pb2+ by waste brewery biomass: pH and cation association effects. Desalination 124:137-144.
Crossref
 
Mussato SI, Dragone G, Rroberto IC (2006). Brewers' spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43:1-14.
Crossref
 
Mussato SI, Fernandes M, Mancilha IM, Roberto IC (2008). Effects of medium supplementation and pH control on lactic acid production from breweer's spent grain. Biochem. Eng. J. 40:437-444.
Crossref
 
Niemi P, Martins D, Buchert J, Faulds CB (2013). Pre-hydrolysis with carbohydratases facilitates the release of protein from brewer's spent grain. Bioresource Technol. 136:529-534.
Crossref
 
Olajire AA (2012). The brewing industry and environmental challenges. J. Cleaner Productn. 1-21.
 
Pandey A, Soccol CR, Nigam P, Soccol VT (2000). Biotechnological potential of agro-industrial residues I: sugarcane bagasse. Bioresource Technol. 74(1):69-80.
Crossref
 
Pinto LC (2011). Aproveitamento de produtos derivados de levedura (Saccharomyces sp.) para o enriquecimento nutricional de alimentos à base de mandioca (Manihot esculenta CRANTZ). Dissertação de Mestrado em Ciência de Alimentos, Universidade Federal da Bahia.
 
Pinto LC, Lopes MV, Carvalho-Filho CD, Alves LVA, Benevides CMJ (2013). Determinação do valor nutritivo de derivados de levedura de cervejaria (Saccharomyces spp.). Revista Brasileira de Produtos Agroindustriais 15:(1):7-17.
 
Plessas S, Trantallidi M, Bekatorou A, Kanellaki M, Nigam P, Koutinas AA (2007). Immobilization of kefir and Lactobacillus casei on brewery spent grains for use in sourdough wheat bread making. Food Chemistry. 105:187-194.
Crossref
 
Prescott SC, Dunn CG (1949). Industrial Microbiology. 2.ed. New York: McGraw-Hill. 923p.
 
Priest FG, Stewart GG (2006). Handbook of Brewing. 2 ed. Flórida: CRC Press and Taylor & Francis Group, 829p. Purification 3M. In www.3m.com/intl/br/3mpurification/img/Cervejas/Cervejas1.jpg
 
Rehm HJ, Reed G (1983). Biotechnology. Germany: Verlag Chemie. 3:642.
 
Reinold MR (2007). A filtração da cerveja. Revista Indústria de Bebidas, Ano 6:35.
 
Reinold MR (1997). Manual Prático de Cervejaria. Editora Aden, São Paulo.
 
Robertson JA, Ianson KJA, Treimo J, Faulds CB, Brocklehhurst TF, Eijsink VGH, Waldron KW (2010). Profiling brewers' spent grain for composition and microbial ecology at the site of production. Food Sci. Technol. 43:890-896.
 
Russ W, Mortel H, Meyer-Pittroff R, Babeck A (2005). Kieselguhr sludge from the deep bed filtration of beverages as a source for silicone in the production of calcium silicate bricks. J. European Ceramic Society. 26:2547-2599.
Crossref
 
Santos M, Jimenez JJ, Bartolome B, Gomez-Cordoves C, Nozal MJ (2003). Variability of brewer's spent grain within a brewery. Food Chemistry. 80:17-21.
Crossref
 
Sgarbieri VC, Alvim ID, Vilela ESD, Baldini VLS, Braganolo (1999). Produção piloto de derivados de levedura (Saccharomyces sp.) para uso como ingredients na formulação de alimentos. Brazilian J. Food Technol. 2:119-125.
 
Shotipruk A, Kkittianong P, Suphantharika M, Muangnapoh C (2005). Application of Rotary microfiltration in debittering processo of spent brewer's yeast. Bioresource Technol. 96:1851-1899.
Crossref
 
Steinmacher NC, Honna FA, Gasparetto AV, Anibal D, Grossmann MVE (2012). Bioconversion of brewer's spent grains by reactive extrusion and their application in bread-making. Food Sci. Technol. 46:542-547.
 
Stredansky M, Conti E (1999). Xanthan production by solid state fermentation. Process Biochem. 34:581-587.
Crossref
 
Tanguler H, Erten H (2008). Utilisation of spent brewer's yeast for yeast extract production by autolysis: the effect of temperature. Food Bioproducts Processing. 86:317-321.
Crossref
 
Treimo J, Aspmo SI, Eusink VGH, Horn SJ (2008). Enzymatic solubilization of proteins in brewer's spent grains. J. Agric. Food Chem. 56:5359-5365.
Crossref
 
Tschope EC (2001). Microcervejarias e Cervejarias: A história, a arte e a tecnologia. Editora Aden, São Paulo.
 
Vieira E, Brandao T, Ferreira IMPLVO (2013a). Evaluation of brewer's spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J. Agric. Food Chem 61(37):8724-8729.
Crossref
 
Vieira E, Moura C, Almeida T, Meireles S, Brandao T, Pinho O, Ferreira IM (2013b). Influence of serial repitching on beer polypeptide profiles. J. Am. Soc. Brew. Chem. 4:275-279.
 
Vieira E, Rocha MAM, Coelho E, Pinho O, Saraiva JA, Ferreira IMPLVO, Coimbra MA (2014). Valuation of brewer's spent grain using a fully recuclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products 52:136-143.
Crossref
 
Vilela ESD, Sgarbieri VC, Alvim ID (2000a). Determinação do valor protéico de células íntegras, autolisado total e extrato de levedura (Saccharomyces sp.). Revista de Nutrição, 13(3):185-192.
Crossref
 
Vilela ESD, Sgarbieri VC, Alvim ID (2000b). Valor nutritivo da biomassa de células íntegras, do autolisado e do extrato de levedura originária de cervejaria. Revista de Nutrição. 13(2):127-134.
Crossref
 
Wang D, Sakoda A, Suzuki M (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour. Technol. 78:293-300.
Crossref
 
Yamada EA, Alvim ID, Santucci MCC, Sgarbiere VC (2003). Composição centesimal e valor protéico de levedura residual de fermentação etanólica e de seus derivados. Revista de Nutrição.16(4):423-432.
Crossref
 
Zupancic GD, Skrjanec I, Logar RM (2012). Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresour. Technol. 124:328-337.
Crossref

 


APA Mathias, T. R. dos S., de Mello, P. P. M., & Sérvulo, E. F. C. (2014). Solid wastes in brewing process: A review. Journal of Brewing and Distilling, 5(1), 1-9.
Chicago Thiago Rocha dos Santos Mathias, Pedro Paulo Moretzsohn de Mello and Eliana Flavia Camporese S&ervulo. "Solid wastes in brewing process: A review." Journal of Brewing and Distilling 5, no. 1 (2014): 1-9.
MLA Thiago Rocha dos Santos Mathias, Pedro Paulo Moretzsohn de Mello and Eliana Flavia Camporese S&ervulo. "Solid wastes in brewing process: A review." Journal of Brewing and Distilling 5.1 (2014): 1-9.
   
DOI 10.5897/JBD2014.0043
URL http://academicjournals.org/journal/JBD/article-abstract/0E6313746212

Subscription Form