Journal of Brewing and Distilling
Subscribe to JBD
Full Name*
Email Address*

Article Number - 3015B4A282

Vol.4(2), pp. 19-45 , September 2013
DOI: 10.5897/JBD2013.0041
ISSN: 2141-2197


Role of magnesium ions on yeast performance during very high gravity fermentation

Henry Okwudili Udeh* and Tsietsie Ephraim Kgatla

Department of Food Science and Technology, School of Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.


 Accepted: 31 July 2013  Published: 30 September 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The advent of highly efficient, environmentally friendly and cost effective fermentation technology has given impetus to research in the field of optimizing nutritional parameters for optimum yeast fermentative performance. Very high gravity fermentation is a novel fermentation technology that provides an increased production capacity from same size fermentation facilities, with outstanding benefits that includes: high ethanol yield per fermentable mash, considerable savings in energy and process water usage, and effluents with low biological oxygen demand amongst others. Limitations to full commercialization of the technology have been attributed to deleterious effects of the fermentation condition on yeast physiology which include high osmotic stress and ethanol toxicity amongst others. The impact of these physiological stresses on yeast cells during high substrate fermentation manifest as sluggish and incomplete fermentation with high residual sugars in beer, reduced ethanol yield, disproportionate synthesis of esters and generation of respiratory deficient yeast crop. However, compelling evidence has implicated magnesium ions with numerous biological processes and more importantly, with the role of curtailing the impact of these stress conditions. Hence, this review highlights two potential stress conditions of very high gravity fermentation; their mechanism of inhibition versus yeast stress response mechanism, role of magnesium ions in yeast physiology and its impact on fermentation processes. The knowledge emphasized herein will be of practical importance to industrial fermentation processes, as it provides feasible clues to improving yeast fermentative performance under high substrate conditions - with perspectives to precise magnesium regulation in yeast.


Key words: Very high gravity fermentation, osmotic stress, ethanol stress, yeast stress tolerance, magnesium ion.

Agu RC, Anyanwu T, Onwumelu AH (1993). Use of high-ethanol-resistant yeast Isolatesfrom Nigerian palm wine in lager beer brewing.World J. Microbiol. Biotechnol. 9:660-661.
Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006). Relationship between ethanol tolerance, H+ ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains.Intl. J. Food Microbiol. 110:34-42.
Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001). Global gene expression during short time ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498:98-103.
Avery SV, Tobin JM (1992). Mechanism of strontium uptake by laboratory and brewingstrains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58:3883-3889.
Bai FW, Anderson WA, Moo-Young M (2008). Ethanol fermentation technologies from sugar and starch feedstock. Biotechnol. Adv. 26:89-105.
Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004). Continuous ethanol production and evaluation loss under very high gravity medium conditions. J. Biotechnol.110:287-293.
Bajaj BK, Taank V, Thakur RL (2003). Characterization of yeasts for ethanol fermentation of molasses with high sugar concentrations. J. Sci. Ind. Res. 62:1079-1085.
Bamforth C (2003). From Babylon to Busch: The World of Beer and Breweries. In: Beer: Tap into the Art and Science of Brewing. Oxford University Press, second edition. p. 25.
Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998). Review: Ethanol production at elevated temperatures and alcohol concentrations: Part 1 - yeast in general. World J. Microbiol. Biotechnol. 14:823-834.
Bayrock DP, Michael IW (2001). Application of multistage continuous fermentation for the production of fuel alcohol by very high gravity fermentation technology. J. Ind. Microbiol. Biotechnol. 27(2):87-93.
Belloch C, Orlic S, Barrio E, Querol A (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex.Intl. J. Food Microbiol.122:188-195.
Birch A, Dumont A, Walker GM (2002). The role of magnesium and calcium in governing yeast agglomeration. Food Tech. Biotechnol. 3:199-205.
Birch RM, Walker GM (2000). Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae.Enzymol. Microbiol. Tech. 26:678-687.
Blackwell KJ, Singleton I, Tobin JM (1995). Metal cation uptake by yeast:a review. Appl. Microbiol. Biotechnol. 43:579-584.
Blazejack S (2006). Biomass of Candida utilis ATCC 9950 yeast as a source of magnesium bioplexes. Pol. J. Food Nutri. Sci. 15(56):9-16.
Blazejack S, Duszkiewicz-Reinhard W (2004). Yeast cell biomass as a potential source of magnesium bioplexes-A review. Pol. J. Food Nutri. Sci. 3:223-232.
Blazejack S, Duszkiewicz-Reinhard W, Gniewosz M, Wiatrzyk P (2008). Impact ofmagnesium and mannose in the cultivation media on the magnesium biosorption, the biomass yield and on the cell wall structure of Candida utilis yeast. Eur. Food Res. Tech. 227:695-700.
Blieck L, Toye G, Dumortier F, Vertrepen KJ, Delvaux FD, Thevelein JM, Vandijck P (2007). Isolation and characterization of brewer's yeast variants with improvedfermentation performance under high-gravity conditions. Appl. Environ. Microbiol.73:815-824.
Bolat I (2008). The importance of trehalose in brewing yeast survival.Inno. Roma. Food Biotech. 2:1-10.
Borst-Pauwells GWFH, Peters PHJ (1981). Phosphate uptake in Saccharomyce cerevisiae.In:phosphate metabolism and regulation in microorganisms.Torriani-Gorini A, Rothman FG, Silver S, Wright A, Tagil E. Am. Soc. Microbiol. Washington, DC. pp. 205-209.
Bose J, Babourina O, Rengel Z (2011). Role of magnesium in alleviation of aluminiumtoxicity in plants.J. Exp. Bot.62(7):2251-2264.
Boulton CA (2000). Trehalose, glycogen and sterol. In: Brewing yeast fermentation performance. Smart KA (First edition) Blackwell Science Ltd, Oxford.
Boulton CA, Quain D (2001). Brewing yeast and fermentation, Blackwell Science Ltd, Oxford, United Kingdom. pp. 81-96
Briggs DE, Boulton CA, Brookes PA, Stevens R (2004). Brewing Science and Practice. Woodhead, Cambridge, UK, pp. 410-439.
Bui DM, Gregan J, Jarosh E, Raginini A, Schweyen RJ (1998). The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J. Biol. Chem. 274:20438-20443.
Biofuels Business (2009). Nutrition in fermentation. Technical profile. pp. 54-56.
Bygrave FL (1976). Cellular calcium and magnesium metabolism. In: An introduction to Bioinorganic chemistry. Williams DR, Charles C Thomas, Springfield, IL.
Cahill G, Murray DM, Walsh PK, Donnelly D (2000). Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. J. Am. Soc. Brew. Chem.58:14-20.
Canetta E, Adya AK, Walker GM (2006). Atomic force microscopy study of the effects of ethanol on yeast cell surface morphology.FEMS Microbiol. Lett. 255:308-319.
Cao Y, Tian H, Yao K, Yuan Y (2011). Simultaneous saccharification and fermentation of sweet potato powder for the production of ethanol under conditions of very high gravity. Front. Chem. Sci. Eng. 5(3):318-324.
Chen H, Fink GR (2006). Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev.20:1150-1161.
Chi Z, Kohlwein SD, Paltauf F (1993). Role of phosphatidylinositol (PI) in ethanol production and ethanol tolerance by a high ethanol producing yeast. J. Ind. Microbiol. Biotechnol. 22:58-63.
Chmiel A (1998). Biotechnologia. Podstawy mikrobiologicznei biochemiczine (Biotechnology. Microbiological and Biochemical bases). Warszawa. pp. 96-98.
Colin LK, Nelson HCM (2007). The natural osmolyte trehalose is a positive regulator of heat-induced activity of yeast heat shock transcription factor. Mol. Cell Biol. 27(4):1505-1515.
Converti A, Fiorito G, Zilli M, Lodi A, Del-Borghi M, Ferraiolo G (1992). Magnesium uptake by Sphaerotilusnatans, the inhibiting effect of ethanol.Bioproc. Eng. 7:325-330.
Cooper DJ, Stewart GG, Bryce JH (2000). Yeast proteolytic activity during high and low gravity wort fermentation and its effect on head retention.J. Inst. Brew. 106:197-201.
Cot M, Loret MO, Francois J, Benbadis L (2007). Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res. 7:22-32.
D'Amore T, Panchal CJ, Stewart GG (1988), Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. J. Appl. Environ. Microbiol. 54:1471- 1510.
D'Amore T (1992). Improving yeast fermentation performance. J. Inst. Brew.98:375-382.
Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009). Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 85:253-263.
Eide DJ (2003). Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. J. Nutri. 133:1532S-1535S.
Eide DJ (2006). Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. ACTA. 1763:711-722.
Elin RJ (1994). Magnesium:the fifth but forgotten electrolyte. Am. J. Clin. Pat.102:616-622.
Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004). Zinc and the Msc2 zinc transporter protein are required for endoplasmic recticulum function. J. Cell Biol. 16(3):325 -335.
Emelyanova EV (2001). Relationship between magnesium and iron uptake by the yeast Candida ethanolica. Proc. Biochim. 36:517-523.
Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic Eng. 10:295-304.
Francois J, Parrou JL (2001). Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:125-145.
Furukawa K, Kitano H, Mizoguchi H, Hara S (2004). Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J. Biosci. Bioeng. 98:107-113.
Gadd GM (1993). Interaction of fungi with toxic metals. New Phy. 124:25-60
Gadner RC (2003). Genes for magnesium transport. Curr. Opin. Plant Biol. 6(3):263-267.
Gaither LA, Eide DJ (2001). Eukaryotic zinc transporters and their regulation. Bio. Metals. 14:251-270.
Galhardo RS, Hastings PJ, Rosenberg SM (2007). Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42:399-435.
Gao C, Wang Z, Liang Q, Qi Q (2010). Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions. Appl. MicrobiolBiotechnol. 87:1821-1827.
Gauci VJ, Beckhouse AG, Lyons V, Beh EJ, Rogers PJ, Dawes IW, Higgins VJ (2009). Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators. FEMS 9:1187-1195.
Gibson RB, Lawrence JS, Leclaire PRJ, Chris D, Smart P, Smart K (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS 31:535-569.
Gibson RB (2011). Improvement of higher gravity brewery fermentation via wort enrichment and supplementation. J. Inst. Brew. 117(3):268-284.
Giles SS, Czuprynski CJ (2004). Extracellular calcium and magnesium, not iron, are needed for optimal growth of Blastomyces dermatitidis yeast form cells in vitro. J. Am. Soc. Microbiol. 11(2):426-429.
Gniewosz M, Duszkiewicz-Reinhard W, Blazejack S, Sobiecka J, Zarzecka M (2007). Investigations into magnesium biosorption by waste brewery yeast Saccharomycesuvarum. Acta Sci. Pol.Technol. Aliment. 6(1):57-67.
Graschopf AJA, Stadler MK, Eder HS, Sieghardt M (2001). The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+ -dependent control of its synthesis and degradation. J. Biol. Chem. 276:16216-16222.
Graves T, Narendranath N, Power R (2007). Development of a "stress model" fermentation system for fuel ethanol yeast strains. J. Inst. Brew. 113(3):263-271.
Gunther T, Vormann J, Liss E (1985). Mg2+ and K+ content in Ehrlich as cites tumour cells during the cell cycle. Magnesium Bulletin.7:1-3.
Hall J, Nelson E, Tilman D, Polasky S, Tiffany D (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl. Acad. Sci. US.103:11206-11210.
Hartwig A (2001). Role of magnesium in genomic stability. Mut. Res. 475:113-121.
Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y,Shimizu H, Shioya S (2007). Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J. Biotech. 131:34-44.
Hirumura M, Sakurai H (2001). Intracellular transport protein. Riken Rev. 35:23-25.
Hohmann S (2002). Osmotic stress signalling and Osmoadaptation in yeast. Microbiol. Mol. Biol. Rev. 66:300-372.
Hu CK, Bai FW, An LJ (2003). Enhancing ethanol tolerance of a self-flocculating fusantof Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+ via reduction inplasma membrane permeability.Biotechnol. Lett. 25:1191-1194.
Huuskonen A, Markkula T, Vidgren V, Lima L, Mulder L, Geurts W, Walsh M, Londesborough J (2010). Selection from Industrial Lager Yeast Strains of variants with Improved Fermentation Performance in very-high gravity wort. Am. Soc. Microbiol.76(5):1563-1573.
Jones RP, Gadd GM (1990). Ionic nutrition of yeast - physiological mechanism involved and implications for Biotechnology. Enz. Microbiol. Technol.12:402-418.
Jones RP, Greenfield PF (1987). Ethanol toxicity and response. In:Brewing Science and Practice Briggs DE, Boulton CA, Brookes PA and Stevens R, Woodhead Cambridge, UK. p. 410.
Kaino T, Takagi H (2008). Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl. Microbiol. Biotech.79:273-283.
Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S (2005). Integrative model of the response of yeast to osmotic shock. Natl. Biotechnol. 23:975-982.
Klis FM, Mol P, Hellingwerf K, Brul S (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS.26:239-256.
Knoop V, Groth-Malonek M, Gebert M, Eifler K, Weynand K (2005). Transport ofmagnesium and other divalent cations:evolution of the 2-TM-GxN proteins in the MIT superfamily. Mol. Gen. Genom. 274:205-216.
Leao C, van Uden N (1984). Effect of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta.774:43-48.
Lee J, Gardner RC (2005). Residues of the yeast ALR1 protein that is critical for Magnesium uptake. (
Lei JJ, Zhao XQ, Ge XM, Bai FW (2007). Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J. Biotechnol.131:270-275.
Levine BS, Coburn JW (1984). Magnesium the mimic/antagonistic of calcium. Natl. Eng. J. Med. 310:1253-1254.
Li S, Chan-Halbrent C (2009). Ethanol production in (the) People's Republic of China:Potential and technologies. Appl. Ener. 86:162-169.
Lin Y, Tanaka S (2006):Ethanol fermentation from biomass resources:current state and prospects. Appl. Microbiol. Biotechnol. 69:627-642.
Linko M, Haikara A, Ritala A, Penttila M (1998) Recent advances in the malting and brewing industry. J. Biotech. 65:85-98.
Lloyd D, Morrell S, Carlsen HN, Dean H, James PE, Rowlands CC (1993). Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae.Yeast. 8:825-833.
Lui GJ, Martin DK, Gardner RC, Ryan PR (2002). Large Mg2+-dependent currents areassociated with the increased expression of ARL1 in Saccharomyces cerevisiae. Microbiol. Lett. 213:231-237.
Lyons TJ, Gasch AP, Gaither LA, Bostein D, Brown PO, Eide DJ (2000). Genome-wide characterization of the Zap1p zinc responsive regulon in yeast. Proc. Natl. Acad. Sci. USA.97:7957-7962.
MacDiarmid CW, Gardner RC (1998). Overexpresion of the Saccharomyces cerevisiae Magnesium Transport System Confers resistance to Aluminium Ion. J. Biol. Chem. 273(3):1727-1732.
Maede T, Wurdler-Murphy SM, Saito H (2004). Metabolism of wort by yeast. In: Brewing Science and Practice Briggs DE, Boulton CA, Brookes PA, Stevens R (2004). Woodhead Cambridge, UK, pp. 410.
Mager WH, Varela JCS (2004). Metabolism of wort by yeast.In:Brewing Science and Practice Briggs DE, Boulton CA, Brookes PA and Stevens R (2004). Woodhead, Cambridge, UK. p. 410.
Majara N, O'Connor-CoxESC, Axell BC (1996). Trehalose- a stress protectant and stress indicator compound for yeast exposed to adverse conditions. J. Am. Soc. Brew. Chem. 54:221-227.
Malcorps P, Haselaars P, Dupire S, Van den EE (2001). Glycogen released by the yeast asa cause of unfilterable haze in beer. MBAA Tech. Quart. 38:95-98.
Mansure JJC, Panek AD, Crowe LM, Crowe JH (1994). Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochim. Biophys. ACTA 1191:309-316.
Marks VD, Sui H, Erasmus D, Van der MGK, Brumm J, Wasserman WW, Bryan J, Van VHJ (2008). Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res. 8:35-52.
Martinez-Pastor MT,Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:2227-2235
Marza E, Camougrand N, Manon S (2002). Bax expression protects yeast plasma membrane against ethanol-induced permeabilization. FEBS Lett.521:47-52.
Maynard AL (1993). The influence of magnesium ions on the growth and metabolism of Saccharomyces cerevisiae. Thesis, Dundee Institute of Technology, Dundee, UK.
Mishra P (1993). Tolerance of fungi to ethanol. In: Stress tolerance of Fungi D.H. Jennings edition, Mercer Dekker, New York. pp. 189-208.
Miyaba S, Izawa S, Inoue Y (2001). The Zrc1 is involved in zinc transport systembetween vacuole and cytosol in Saccharomyces cerevisiae. Biochim. Biophy. Res. Comm.282:79-83.
Moonjai N, Verstrepen KJ, Delvaux FR, Derdelinckx G, Verachtert H (2002). The effect of linoleic acid supplementation of cropped yeast on its subsequent fermentation performance an acetate ester synthesis. J. Inst. Brew.108:227-235.
Munroe JH (1995). Fermentation:Hardwick WA (2nd edition) Hand book of brewing. 1st Edition Marcel Dekkar, New York. pp. 323-353.
Narendranath NV, Thomas KC, Ingledew WM (2001). Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 26:171-177.
Nass R, Rao R (1999). The yeast endosomal Na+/ H+ exchanger Nhx1, confers osmotolerance following acute hypertonic shock. Microbiol.145:3221-3224.
Neves MJ, Francois J (1992). The mechanism by which a heat shock induces trehalose in Saccharomyces cerevisiae. Biochem. J.288:22859-5522.
O'Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS (2002).Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol. Cel. Biol. 22:4086-4093.
Okon AA, Nwabueze TU (2009). Simultaneous effect of divalent cation in hydrolysed cassava starch medium used by immobilized yeast for ethanol production. Afr. J. Food Sci. 3(8):217-222.
Okorokov LA, Lichko LP, Kadomtseva VM, Kholodenko VP, Kulaev IS (1974). Metabolism and physicochemical state of Mg2+ ions in fungi. Microbiologiya.43:410-416.
Osman YA, Ingram LO (1985). Mechanism of ethanol inhibition of fermentation in Zymomonasmobilis CP4. J. Biotechnol.164(1):173-180.
Park JK, Lee JW, Jung JY (2003). Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enz. Microb. Tech. 33:371-378.
Parsell DA, Lindquist S (1994). Heat shock proteins and stress tolerance:The Biology of Heat Shock Proteins and Molecular Chaperones. Morimoto RI, Tissieres A, and GeorgopoulosC (eds). Cold Spring Harbor, NY, Cold Harbor Laboratory Press. pp. 457-487.
Phisalaphong M, Srirattana N, Tanthapanichakoon W (2006). Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem. Eng. J. 28(1):36-43.
Piddocke MP, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L (2009). Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl. Microbiol. Biotechnol. 84:453 - 464.
Piper PW (1995). The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Lett. 134:121 -127.
Pironcheva GL (1998). The effect of magnesium ions during beer fermentation. Cytobios. 94:135-139.
Pisat NP, Pandey A, MacDiarmid CW (2009). MNR2 Regulates Intracellular Magnesium Storage in Saccharomyces cerevisiae. Gene. Soc. Am. 183:873-884.
Pulingundla PSD, ReddyOVS, SanghoonK (2010). Very high gravity (VHG) ethanolic brewing and fermentation:a research update. J. Ind. Microbiol. Biotechnol. 38:133-1144.
Pulingundla PSD, Reddy OVS (2010). High gravity fermentation of sugarcane molasses to produce ethanol:Effect of nutrients.Ind. J. Microbiol. 50:S82-S87.

Quain DE, Tubb RS (1982). The importance of glycogen in brewing yeast. Tech Q- Mas. Brew Ass. Am. 19:19-23.
Querol A, Fernandez-Espinar MT, del Olmo M, Barrio E (2003). Adaptive evolution of wine yeast. Intl. J. Food Microbiol. 86:3-10.
Rapoport AI, Khrustaleva GM, Chammanis GY, Beker ME (1995). Yeast anhydrobiosis:permeability of the plasma membrane. Ikobiologiya. 64:275-278.
Rautio JJ, Huuskonen A, Vuokko H, VidgrenV, Londesborough J (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast. 24:741-760.
Rees EMR, Stewart GG (1997). The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity wort. J. Inst. Brew.103:287-291.
Rees EMR, Stewart GG (1998). Strain specific response of brewer's yeast strains to zinc concentrations in conventional and high gravity wort. J. Inst. Brew. 104:221-228.
Rees EMR, Stewart GG (1999). Effects of Magnesium, Calcium and Wort oxygenation on the fermentative Performance of Ale and Lager Strains Fermenting Normal and High Gravity wort. J. Inst. Brew. 105(4):211-217.
Saito H, Tatebayashi K (2004). Regulation of the osmoregulatory HOG-MAPK cascade in yeast. J. Biochem. 136:267-272.
Schindl RJ, Romanin WC, Schweyen RJ (2007). Mrs2p forms a high conductance Mg2+ selective channel in mitochondrial.Biophy. J. 93:3872-3883.
Schmitt AP, McEntee K (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multi-stress response in Saccharomyces cerevisiae. Proc. Natl. Aca. Sci. USA. 93:5777-5782.
Sebollela A, Louzada PR, Sola-Penna M, Sarrone-Williams V, Coelho-Sampaio T, Ferreira ST (2004). Inhibition of yeast glutathione reductase by trehalose:possible implications in yeast survival and recovery from stress. Int. J. Biochem. Cell Biol. 36:900-908.
Sharma SC, Raj D, Forouzandeh M, Bansal MP (1996). Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Appl. Biochem. Biotech. 56:189-195.
Sigler K, Matoulkova D, Dienstbier M, Gabriel P (2009). Net effect of wort osmotic pressureon fermentation course, yeast vitality, beer flavour, and haze. Appl. Microbiol. Biotechnol. 82:1027-1035.
Silva DP, Branyik T, Dragone G, Vicent AA, Teixeira JA, Silva JBA (2008). Highgravity batch and continuous processes for beer production:Evaluation of fermentation performance and beer quality. Chem. Papers. 62(1):34-41.
Simola M, Hanninen AL, Stranius SM, Makarow M (2000). Trehalose is required for conformational repair of heat-denatured proteins in the yeast endoplasmic recticulumbut not for maintenance of membrane traffic functions after severe heat stress. Mol. Microbiol. 37:42-53.
Simonin H, Beney L, Gervais P (2008). Controlling the membrane fluidity of yeasts during coupled thermal and osmotic treatments. Biotechnol. Bioeng. 100:325-333.
Singer MA, Lindquist S (1998). Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell.1:639-648.
APA (2013). Role of magnesium ions on yeast performance during very high gravity fermentation. Journal of Brewing and Distilling, 4(2), 19-45.
Chicago Henry Okwudili Udeh and Tsietsie Ephraim Kgatla. "Role of magnesium ions on yeast performance during very high gravity fermentation." Journal of Brewing and Distilling 4, no. 2 (2013): 19-45.
MLA Henry Okwudili Udeh and Tsietsie Ephraim Kgatla. "Role of magnesium ions on yeast performance during very high gravity fermentation." Journal of Brewing and Distilling 4.2 (2013): 19-45.
DOI 10.5897/JBD2013.0041

Subscription Form