African Journal of Bacteriology Research
Subscribe to JBR
Full Name*
Email Address*

Article Number - 045B41365844


Vol.9(5), pp. 30-36 , August 2017
DOI: 10.5897/JBR2017.0244
ISSN: 2006-9871



Full Length Research Paper

Antimicrobial activity of secondary metabolites obtained with different carbon sources at different stages of the Pseudomonas growth curve isolated from Fresnillo, Zacatecas, México mineral soils



Mayela Robles-Huízar
  • Mayela Robles-Huízar
  • Universidad Autonoma de Nuevo Leon, Centro de Innovacion Biotecnologica (CINNOB), Instituto de Biotecnologia, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragan s/n, Cd. Universitaria, San Nicolás de los Garza, Nuevo Leon, Mexico.
  • Google Scholar
Susana De La Torre-Zavala
  • Susana De La Torre-Zavala
  • Universidad Autonoma de Nuevo Leon, Centro de Innovacion Biotecnologica (CINNOB), Instituto de Biotecnologia, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragan s/n, Cd. Universitaria, San Nicolás de los Garza, Nuevo Leon, Mexico.
  • Google Scholar
Myriam A. De La Garza-Ramos
  • Myriam A. De La Garza-Ramos
  • Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Avenida Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, Mexico.
  • Google Scholar
Luis J. Galan-Wong
  • Luis J. Galan-Wong
  • Universidad Autonoma de Nuevo Leon, Centro de Innovacion Biotecnologica (CINNOB), Instituto de Biotecnologia, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragan s/n, Cd. Universitaria, San Nicolás de los Garza, Nuevo Leon, Mexico.
  • Google Scholar







 Received: 15 June 2017  Accepted: 27 July 2017  Published: 31 August 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The obtention of secondary metabolites from bacterial filtrates has permitted the identification of new compounds with diverse biotechnological applications. These metabolites were generated under different conditions. Eighty-six strains of Pseudomonas were isolated from mineral soils of the central region of Zacatecas to determine if these generated secondary metabolites possess antimicrobial activity against phytopathogenic microorganisms. Afterwards, parameters, such as nutrients, were identified using seven different mediums, time of production of bioactive metabolites using growth curves, the determination of antimicrobial activity during fermentation, and their minimum inhibitory concentration (MIC). One strain of Pseudomonas was able to generate specific secondary metabolites for one or all microorganisms during different stages of the growth curve. The best phase for development of these metabolites was the stationary phase; however, in enriched media supplemented with glycerol and mannitol, less antimicrobial activity was observed than that with minimal salts medium supplemented with glucose, since in the latter, five strains were susceptible. Additionally, as the growth curve advanced, the generated metabolites were specific for one microorganism and lost activity against others. It was also determined that the MIC of the secondary metabolites generated in minimal salts medium was much lower than that obtained in enriched media supplemented with glycerol and mannitol. The Pseudomonas strain obtained from mining soils is capable of generating specific bioactive metabolites of one microorganism at different stages of growth.

Key words: Phytopathogens, minimal inhibitory concentration, metabolism, biochemical applications, strains.

Bennasar A, Mulet M, Lalucat J, Garcia-Valdes E (2010). PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol. 10(118).
Crossref

 

Braun SD, Volksch B, Nuske J, Spiteller / D (2008). 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem: a Euro. J. Chem. Biol. 9(12):1913-1920.

 
 

Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009). Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett. Appl. Microbiol. 48(5):505-512.
Crossref

 
 

Duffy BK, Defago G (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65(6):2429-2438.

 
 

Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer W (2011). Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 5(6):973-985.
Crossref

 
 

Glick BR (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41(2):109-117.
Crossref

 
 

Gross H, Loper JE (2009). Genomics of secondary metabolite production by Pseudomonas spp. Natural product reports 26(11):1408-1446.
Crossref

 
 

Guillot E, Leclerc H (1993). Bacterial flora in natural mineral waters: characterization by ribosomal ribonucleic acid gene restriction patterns. Systematic Appl. Microbiol. 16(3):483-493.
Crossref

 
 

Halgren A, Azevedo M, Mills D, Armstrong D, Thimmaiah M, McPhail K, Banowetz G (2011). Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria. J. Appl. Microbiol. 111(4):949-959.
Crossref

 
 

Higgs RE, Zahn JA, Gygi JD, Hilton MD (2001). Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67(1):371-376.
Crossref

 
 

Jousset A, Lara E, Wall LG, Valverde C (2006). Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl. Environ. Microbiol. 72(11): 7083-7090.
Crossref

 
 

Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011). Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol. Microbiol. 81(2):395-414.
Crossref

 
 

Lee X, Azevedo MD, Armstrong DJ, Banowetz GM, Reimmann C (2013). The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor. Environ. Microbiol. Rep. 5(1):83-89.
Crossref

 
 

Li L, Abu Al-Soud W, Bergmark L, Riber L, Hansen LH, Magid J, Sorensen SJ (2013). Investigating the diversity of pseudomonas spp. in soil using culture dependent and independent techniques. Curr. Microbiol. 67(4):423-430.
Crossref

 
 

Michelsen CF, Jensen H, Venditto VJ, Hennessy RC, Stougaard P (2015). Bioactivities by a crude extract from the Greenlandic Pseudomonas sp. In5 involves the nonribosomal peptides, nunamycin and nunapeptin. Peer J. (3):1476.
Crossref

 
 

Polanski-Cordovano G, Romano L, Marotta LL, Jacob S, Soo Hoo J, Tartaglia E, Asokan D, Kar S, Demain AL (2013). Nutritional studies on production of antibacterial activity by the zebra mussel antagonist, Pseudomonas fluorescens CL0145A. J. Microbiol. Biotechnol. 23(5): 656-660.
Crossref

 
 

Ramos JL, Filloux A (2010). Pseudomonas: Volume 6: Molecular Microbiology, Infection and Biodiversity, Springer Science & Business Media.

 
 

Reder-Christ K, Schmidt Y, Dorr M, Sahl HG, Josten M, Raaijmakers JM, Gross H, Bendas G (2012). Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas. Biochim Biophys Acta 1818(3):566-573.
Crossref

 
 

Sambrook J, Russell, DW (2001). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press.

 
 

Siddiqui IA, Shaukat SS (2004). Liquid culture carbon, nitrogen and inorganic phosphate source regulate nematicidal activity by fluorescent pseudomonads in vitro. Lett. Appl. Microbiol. 38(3):185-190.
Crossref

 
 

Trippe K, McPhail K, Armstrong D, Azevedo M, Banowetz G (2013). Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties. BMC Microbiol. 13(111).
Crossref

 
 

Upadhyay A, Srivastava S (2008). Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent. Lett. Appl. Microbiol. 47(2):98-105.
Crossref

 
 

Wadhwani T, Desai K, Patel D, Lawani D, Bahaley P, Joshi P, Kothari V (2009). Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J. Microbiol. 7(1).

 
 

Yadav S, Yadav S, Kaushik R, Saxena AK, Arora DK (2014). Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. J. Basic Microbiol. 54(5):425-437.
Crossref

 
 

Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Chakrabarty AM (2002). Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc. Natl. Acad. Sci. U.S.A. 99(22):14098-14103.
Crossref

 

 


APA Robles-Huízar, M., La Torre-Zavala, S., De La Garza-Ramos, M. A., & Galan-Wong, L. J. (2017). Antimicrobial activity of secondary metabolites obtained with different carbon sources at different stages of the Pseudomonas growth curve isolated from Fresnillo, Zacatecas, México mineral soils. African Journal of Bacteriology Research, 9(5), 30-36.
Chicago Mayela Robles-Hu&izar, Susana De La Torre-Zavala, Myriam A. De La Garza-Ramos and Luis J. Galan-Wong. "Antimicrobial activity of secondary metabolites obtained with different carbon sources at different stages of the Pseudomonas growth curve isolated from Fresnillo, Zacatecas, México mineral soils." African Journal of Bacteriology Research 9, no. 5 (2017): 30-36.
MLA Mayela Robles-Huiacute;zar, et al. "Antimicrobial activity of secondary metabolites obtained with different carbon sources at different stages of the Pseudomonas growth curve isolated from Fresnillo, Zacatecas, México mineral soils." African Journal of Bacteriology Research 9.5 (2017): 30-36.
   
DOI 10.5897/JBR2017.0244
URL http://academicjournals.org/journal/JBR/article-abstract/045B41365844

Subscription Form