African Journal of Bacteriology Research
Subscribe to JBR
Full Name*
Email Address*

Article Number - 7A559DB65413


Vol.9(4), pp. 21-29 , July 2017
DOI: 10.5897/JBR2016.0214
ISSN: 2006-9871



An optimised in vitro protocol for mass production of Rhizophagus irregularis spores - for sustainable agriculture



B. Mohan Raj
  • B. Mohan Raj
  • R & D Center for Conservation Biology and Plant Biotechnology, Shivashakti Biotechnologies Private Limited, S. R. Nagar, Hyderabad – 500 038, Telangana State, India.
  • Google Scholar
R. Bharath Kumar
  • R. Bharath Kumar
  • Department of Biotechnology, Vignan University, Guntur - 522 213, Andhra Pradesh, India.
  • Google Scholar
G. Venkata Rao
  • G. Venkata Rao
  • R & D Center for Conservation Biology and Plant Biotechnology, Shivashakti Biotechnologies Private Limited, S. R. Nagar, Hyderabad – 500 038, Telangana State, India.
  • Google Scholar
K. Sri Rama Murthy
  • K. Sri Rama Murthy
  • R & D Center for Conservation Biology and Plant Biotechnology, Shivashakti Biotechnologies Private Limited, S. R. Nagar, Hyderabad – 500 038, Telangana State, India.
  • Google Scholar







 Received: 22 June 2016  Accepted: 28 November 2016  Published: 31 July 2017

Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


The Arbuscular Mycorrhizal Fungus (AMF) plays a symbiotic vital role in most of the plant species by maintaining health, nutrient availability, against water stress, heavy metal resistance, against dreadful diseases with higher yields. To reach the requirement of AMF, large scale production practices can be required to produce specific strain aseptic inoculum. Carrot roots were selected for mass production of mycorrhizal spores among tomato, potato, sweet potato, soybean, amaranths and carrots through root organ culturing method. Aggregated roots were cultured and developed as root clumps for continuous sub-culturing. With slight modification of root organ culture method and split plate method, in containers shown significant increase in the extra radical spore count. Maximum Rhizophagus irregularis spore count was achieved with molecular weight (MW) medium among three different media MW medium, M medium and MSR medium. Almost 99204±1438.10 R. irregularis propagules were achieved with sugar free MW medium per container in 90 days of incubation in dark. M medium fortified with 1% sugars yields 16236±1186.70 intraradical and 39458±1098.00 extra radical spores were observed. To achieve continuous production of Mycorrhizal inoculum, transformed callus root clumps were infected with R. irregularis. This AMF inoculum developed in the sugar free medium is less contagious and highly productive during the process of harvesting, packing, transportation and preserved for longer duration without much contaminants.

Key words: Arbuscular mycorrhizal fungus, Rhizophagus irregularis, root organ culture, endomycorrhizae.

Abbreviation:

AMF, Arbuscular mycorrhizal fungus; AM, Arbuscular mycorrhizal; M media, minimal mineral media; MSR media, modified Strullu-Romand media; Ri, root inducing; T- DNA, transfer DNA; MTCC, microbial type culture collection; LB, Lauria-Bertani; YMB, yeast mannitol broth; YMA, yeast mannitol agar; YEP, yeast extract peptone; MS, Murashige and Skoog; MW medium, modified White’s medium; BOD, biological oxygen demand.


Adholeya A, Tiwari P, Singh R (2005). Large scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Soil Biology, Volume 4 in vitro culture of Mycorrhizae (eds. Declerck S, Strullu –GD, Fortin A). Springer-Verlag Berlin Heidelberg 315-338.
Crossref

 

Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011). Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J. Appl. Natural Sci. 3(2):340-351.

 

Aktar MW, Sengupta D, Chowdhury A (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdiscipl.Toxicol. 2(1):1-12.
Crossref

 

Almeida-Rodríguez AM, Gómes MP, Loubert-Hudon A, Joly S, Labrecque M (2015). Symbiotic association between Salix purpurea L. And Rhizophagus irregularis: modulation of plant responses under copper stress. Tree Physiol. 36:407-420.
Crossref

 

Ambrosini VG, Voges JG, Canton L, CoutoRda R, Ferreira PA, Comin JJ, de Melo GW, Brunetto G, Soares CR (2015). Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Braz. J. Microbiol. 46(4):1045-1052.
Crossref

 

Anda CCO, de Boulois HD, Declerck S (2015). The arbuscular mycorrhiza fungus Rhizophagus Irregularis MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions. Fruits 70(1):37-46.
Crossref

 

Bago B, Azco’n-Aguilar C, Piche´ Y (1998a). Architecture and developmental dynamics of the external mycelium of th earbuscular mycorrhizal fungus I grown under monoxenic conditions. Mycologia 90:52-62.
Crossref

 

Bago B, Vierheilig H, Piche Y, Azcon‐Aguilar C (1996). Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol. 133:273-280.
Crossref

 

Bécard G, Fortin A (1988). Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108:211-218.
Crossref

 

Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014). ArbuscularMycorrhizal Fungi and their Value for Ecosystem Management. Environmental Sciences » "Biodiversity - The Dynamic Balance of the Planet", (ed. Grillo O), Chapter 8.

 

Berruti A, Lumini E, Balestrini R, Bianciotto V (2016). Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Rev. Front Microbiol. 6:1559.
Crossref

 

Binondo LF, Pergola M, Silvani V, Colombo R, Bompadre J, Godeas A (2012). Continuous and long-term monoxenic culture of the arbuscular mycorrhizal fungus Gigaspora decipiens in root organ culture. Fungal Biol. 116:729-735.
Crossref

 

Bompadre MJ, Pérgola M, Bidondo LF, Colombo RP, Silvani VA, Pardo AG, Ocampo JA, Godeas AM (2014). Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions. Sci. World J. 2014(12).

 

Buysens C, César V, Ferrais F, Declerck S (2016). Inoculation of Medicago sativa cover crop with Rhizophagu sirregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105:137-143.
Crossref

 

Cattani I, Beone GM, Gonnelli C (2015). Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zeamays L.) cultivated on an arsenic-contaminated soil. Environ. Sci. Pollut. Res. Int. 22(9):6570-6577.
Crossref

 

Ceballos I, Ruiz M, Fernández C, Pe-a R, Rodríguez A, Sanders IR (2013). The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava. PLoS ONE 8(8):e70633.
Crossref

 

De Andrade SA, Domingues AP, Mazzafera P (2015). Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141-149.
Crossref

 

De Souza FA, Declerck S, Smith E, Kowallchuk GA (2005). Morphological, ontogenetic and molecular characterization of Scutellospora reticulata (Glomeromycota). Mycol. Res. 109:697-706.
Crossref

 

Debiane D, Garcon G, Verdin A, Fontaine J, Durand R, Shirali P (2009). Mycorrhization alleviates benzo[a]pyrene-inducedoxidative stress in an in vitro chicory root model. Phytochemistry 70:1421-1427.
Crossref

 

Declerck SD, Bivort C, De Souza FA (2004). Development of extraradical mycelium of Scutellospora reticulata under root-organ culture: spore production and function of auxiliary cells. Mycol. Res. 108:84-92.
Crossref

 

Declerck SD, Cranenbrouk S, Leboulenge E (2001). Modeling the sporulation dynamics of arbuscular mycorrhizal fungus in monoxenic culture. Mycorrhiza 11:225-230.
Crossref

 

Dhawi F, Datta R, Ramakrishna W (2016). Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33-41.
Crossref

 

Diop TA, Plenchette C, Strullu DG (1994a). Dual axenic culture of sheared-rood inocula of vesicular arbuscular mycorrhizal fungi associatedwith tomato roots. Mycorrhiza 5:17-22.
Crossref

 

Driai S, Verdin A, Ed F, Sahraoui H (2015). Is the arbuscular mycorrhizal fungus Rhizophagus irregularis ableto fulfil its life cycle in the presence of diesel pollution? Int. Biodeterior. Biodegr. 105:58-65.
Crossref

 

Fester T (2013). Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated ground water bioremediation. Microb. Biotechnol. 6(1):80-84.
Crossref

 

Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002). Arbuscular mycorrhiza on root-organ cultures. Can. J Bot. 80:1-20.
Crossref

 

Fusconi A (2014). Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann. Bot. 113(1):19-33.
Crossref

 

Gavito ME, Abud YC, Sántiz YM, Trujillo MM, Delgado CG, Rivera JRE (2014). Effects of aluminumand lead on the development of Rhizophagus irregularis and roots in root cultures. Environ. Eng. and Manag. J. 13(9):2357-2361.

 

Habibzadeh Y (2015). The effect of arbuscular mycorrhizal fungi and phosphorus levels on dry matter production and rrot traits in cucumber (Cucumis sativus L.). Afr. J. Environ. Sci. Technol. 9:65-70.
Crossref

 

Hijri M (2016). Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza pp. 209-214.
Crossref

 

Ijdo M, Cranenbouck S, Declerck S (2011). Methods for large-scale production of AM fungi: past, present and future. Mycorrhiza 21:1-16.
Crossref

 

Ingrid L, Lounès-Hadj Sahraoui A, Frédéric L, Yolande D, Joël F (2016). Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. Environ. Pollut. 213:549-560.
Crossref

 

Labidi S, Calonne M, Jeddi FB, Debiane D, Rezgui S, Laruelle F, Tisserant B, Grandmougin-Ferjani A, Sahraoui ALH (2011). Calcareous impact on arbuscular mycorrhizal fungus development and on lipidperoxidation in monoxenicroots. Phytochemistry 72:2335-41.
Crossref

 

Lenoir I, Fontaine J, Sahraoui AL-H (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123.
Crossref

 

Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M (2015). Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53(2):250-258.
Crossref

 

Lone MI, He Z-I, Stoffella PJ, Yang X-e (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B 9(3):210-220.
Crossref

 

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115(1):495-501.
Crossref

 

Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM (2015). Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res. Int. 6940-50.

 

Mosse B, Hepper CM (1975). Vesicular-arbuscularinfections in root organ cultures. Physiol. Plant Pathol. 5:215-223.
Crossref

 

Mugnier J, Mosse B (1987). Vesicular-arbuscularinfections in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045-1050.
Crossref

 

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol. Plant 15:473-497.
Crossref

 

Nuutila AM, Vestberg M, Kauppinen V (1995). Infection of hairy roots of strawberry (Fragaria × Ananassa Duch.) with arbuscular mycorrhizal fungus. Plant Cell Rep. 14(8):505-9.
Crossref

 

Oruru MB and Njeru EM (2016). Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed. Res. Int. 2016:1-12.
Crossref

 

Puri A, Adholeya A (2013). A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producingspores of arbuscularmycorrhizal fungi. Symbiosis 59:87-97.
Crossref

 

Schultze M (2013). Protocols for growing plant symbioses; mycorrhiza. Methods Mol. Biol. 953:47-59.
Crossref

 

St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996). Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100:328-332.
Crossref

 

Tahat MM, Kamaruzaman , Sijam, Othman R (2010). mycorrhizal fungi as a biocontrol agent. Plant Pathol. J. 9:198-207.

 

Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M (2015). Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Plant Signal Behav. 10(6):e1028706.
Crossref

 

Tekaya M, Mechri B, Mbarki N, Cheheb H, Hammami H, Attia F (2016). Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica pp. 1-10.

 

Tiwari P, Adholeya A (2002). In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol. Lett. 206:39-43.
Crossref

 

Voets L, De La Providencia IA, Fernandez K, Ijdo M, Cranenbrouck S, Declerck S (2009). Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347-356.
Crossref

 

Wahbi S, Prin Y, Maghraoui T, Sanguin H, Thioulouse J, Oufdou K, Hafidi M, Duponnois R (2015). Field application of the mycorrhizal fungus Rhizophagus irregularis increasesthe yield of wheat crop and affects soil microbial functionalities. AJPS 6(19):3205-3215.
Crossref

 

White PR (1943). A handbook of plant tissue culture. J. Cattel, Lancaster, Pa.
Crossref

 

Wu S, Zhang X, Sun Y, Wu Z, Li T, Hu Y, Lv J, Li G, Zhang Z, Zhang J, Zheng L, Zhen X, Chen (2016). Chromium immobilization by extra- and intra-radical fungalstructures of arbuscular mycorrhizal symbioses. J. Hazard. Mater. 316:34-42.
Crossref

 


APA Raj, B. M., Kumar, R. B., Rao, G. V., & Murthy, K. S. R. (2017). An optimised in vitro protocol for mass production of Rhizophagus irregularis spores - for sustainable agriculture. African Journal of Bacteriology Research, 9(4), 21-29.
Chicago B. Mohan Raj, R. Bharath Kumar, G. Venkata Rao and K. Sri Rama Murthy. "An optimised in vitro protocol for mass production of Rhizophagus irregularis spores - for sustainable agriculture." African Journal of Bacteriology Research 9, no. 4 (2017): 21-29.
MLA B. Mohan Raj, et al. "An optimised in vitro protocol for mass production of Rhizophagus irregularis spores - for sustainable agriculture." African Journal of Bacteriology Research 9.4 (2017): 21-29.
   
DOI 10.5897/JBR2016.0214
URL http://academicjournals.org/journal/JBR/article-abstract/7A559DB65413

Subscription Form