Journal of Bioinformatics and Sequence Analysis
Subscribe to JBSA
Full Name*
Email Address*

Article Number - 0943E915791


Vol.5(2), pp. 25-33 , February 2013
DOI: 10.5897/JBSA2012.0056
ISSN: 2141-2464



Full Length Research Paper

In silico identification of miRNAs and their target prediction from Japanese encephalitis


Vijay Laxmi Saxena* and Alka Dwivedi




National Bioinformatics Infrastructure Facility Centre of (DBT) Ministry of Science and Technology (Govt. of India), D.G (PG) College civil lines Kanpur (u.p).


Email: vijaykanpur@rediffmail.com, alkabioinfo964@gmail.com






 Accepted: 26 February 2013  Published: 28 February 2013

Copyright © 2013 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0


 

MicroRNA is a family of small non-coding RNAs that regulate gene expression in a sequence-specific manner. miRNAs are a class of post-transcriptional regulators. miRNAs are a family of 19 to 25 small nucleotide RNAs. Since miRNAs have been discovered and their role in gene regulation established, it has been theorized that viruses could generate miRNAs as well and that these viral encoded miRNAs could regulate cellular mechanisms and viral replication. There are several lines of evidence to support this theory. Japanese encephalitis is a viral disease (Flavivirus) but its geographic strains differ by RNA sequencing neurotropic virus that primarily affects the central nervous system. That is why this work mainly focuses on finding out its function. An oligonucleotide drug candidate can be designed against this virus. Computational prediction is analyzed and estimation of evolutionary relationship among types of organism is done in this project. 25 precursors and eight potential miRNAs were found, and these miRNAs target 123 target sites in 13 genes in human.

 

Key words: miRNA, pre-miRNA, pri-miRNA, Japanese encephalitis, precursor potential miRNA, +target prediction.

Amarzguioui M, Rossi JJ, Kim D (2005). Approaches for chemically
 
Amarzguioui M, Rossi JJ, Kim D (2005). Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 579:5974-5981.
http://dx.doi.org/10.1016/j.febslet.2005.08.070
PMid:16199038
 
Carthew RW, Sontheimer EJ, (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell., 136:642–655.
http://dx.doi.org/10.1016/j.cell.2009.01.035
PMid:19239886 PMCid:PMC2675692
 
Chen W, Yan W, Du Q, Fei L, Liu M (2008). RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and sucklingmice. J. Virol. 78:6900–6907
http://dx.doi.org/10.1128/JVI.78.13.6900-6907.2004
PMid:15194766 PMCid:PMC421660
 
Cullen BR, (2004). Transcription and processing of human microRNA precursors. Mol Cell. 16:861-865.
http://dx.doi.org/10.1016/j.molcel.2004.12.002
PMid:15610730
 
Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nat. 411:494-498.
http://dx.doi.org/10.1038/35078107
PMid:11373684
 
Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K, (2009). Past present and future of Japanese encephalitis. Emerg Infect Dis. 15:1-7.
http://dx.doi.org/10.3201/eid1501.080311
PMid:19116041 PMCid:PMC2660690
 
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R, (2004). The Microprocessor complex mediates the genesis of microRNAs. Nat. 432(7014):235-240.
http://dx.doi.org/10.1038/nature03120
PMid:15531877
 
Griffiths-Jones S, (2004). The microRNA Registry. Nucleic Acids Res. 32:D109-D111.
http://dx.doi.org/10.1093/nar/gkh023
PMid:14681370 PMCid:PMC308757
 
Hammond SM (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nat. 404:293-296.
http://dx.doi.org/10.1038/35005107
PMid:10749213
 
Hammond SM (2005). Dicing and slicing: The core machinery of the RNA interference pathway. FEBS Lett. 579: 5822–5829.
http://dx.doi.org/10.1016/j.febslet.2005.08.079
PMid:16214139
 
Hammond SM, Caudy AA, Hannon GJ, (2001). Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet. 2:110-119.
http://dx.doi.org/10.1038/35052556
PMid:11253050
 
Krek A, Grün D, Poy MN, (2005).Combinatorial microRNA target predictions. Nat. Genet. 5:495–500.
http://dx.doi.org/10.1038/ng1536
PMid:15806104
 
Kumar P, Wu H, McBride JL, Jung KE, Kim MH (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nat. 448: 39-43.
http://dx.doi.org/10.1038/nature05901
PMid:17572664
 
Lee Y, (2003). the nuclear RNase III Drosha initiates microRNA processing. Natur. 425:415-419.
http://dx.doi.org/10.1038/nature01957
PMid:14508493
 
Lee Y, KM, Han J, Yeom KH, Lee S, Baek SH, Kim VN, (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23(20):4051-4060. Please verify the year in the main text with that in the reference section.
http://dx.doi.org/10.1038/sj.emboj.7600385
PMid:15372072 PMCid:PMC524334
 
Liu YP, Haasnoot J, ter Brake O, Berkhout B, Konstantinova P (2008).Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 36: 2811–2824.
http://dx.doi.org/10.1093/nar/gkn109
PMid:18346971 PMCid:PMC2396423
 
Mathews DH, Sabina J, Zucker M (1999). Turner H, Expanded Sequence Dependence of Thermodynamic Parameters Provides Robust Prediction of RNASecondary Structure. J. Mol. Biol. 288(5):911-940.
http://dx.doi.org/10.1006/jmbi.1999.2700
PMid:10329189
 
Moore MS (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nat. 365:661-663.
http://dx.doi.org/10.1038/365661a0
PMid:8413630
 
Murakami M, Ota T, Nukuzuma S, Takegami T (2005). Inhibitory effect of RNAi on Japanese encephalitis virus replication in vitro and in vivo. Microbiol. Immuno. 49:1047-1056.
http://dx.doi.org/10.1111/j.1348-0421.2005.tb03701.x
PMid:16365529
 
Ruvkun G (2001). Molecular Biology: Glimpses of a Tiny RNA World. Sci. 294:797-799.
http://dx.doi.org/10.1126/science.1066315
PMid:11679654
 
Siolas D, Lerner C, Burchard J, Linsley PS, (2005). Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23:227-231.
http://dx.doi.org/10.1038/nbt1052
PMid:15619616
 
Sui G, Soohoo C, Affar B, Gay F, Shi Y (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA, 99:5515-5520.
http://dx.doi.org/10.1073/pnas.082117599
PMid:11960009 PMCid:PMC122801
 
Watanabe T, Umehara T, Kohara M (2007). Therapeutic application of RNA interference for hepatitis C virus. Adv Drug Deliv Rev. 59:1263-1276.
http://dx.doi.org/10.1016/j.addr.2007.03.022
PMid:17822803
 
Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res. 13:3406-3415.
http://dx.doi.org/10.1093/nar/gkg595

 


APA (2013). In silico identification of miRNAs and their target prediction from Japanese encephalitis. Journal of Bioinformatics and Sequence Analysis, 5(2), 25-33.
Chicago Vijay Laxmi Saxena and Alka Dwivedi. "In silico identification of miRNAs and their target prediction from Japanese encephalitis." Journal of Bioinformatics and Sequence Analysis 5, no. 2 (2013): 25-33.
MLA Vijay Laxmi Saxena and Alka Dwivedi. "In silico identification of miRNAs and their target prediction from Japanese encephalitis." Journal of Bioinformatics and Sequence Analysis 5.2 (2013): 25-33.
   
DOI 10.5897/JBSA2012.0056
URL http://academicjournals.org/journal/JBSA/article-abstract/0943E915791

Subscription Form